Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
LOZANO DÍEZ, A.; PLCHOT, O.; MATĚJKA, P.; GONZALEZ-RODRIGUEZ, J.
Originální název
DNN Based Embeddings for Language Recognition
Anglický název
Druh
Stať ve sborníku v databázi WoS či Scopus
Originální abstrakt
In this work, we present a language identification (LID) systembased on embeddings. In our case, an embedding is a fixed-lengthvector (similar to i-vector) that represents the whole utterance, butunlike i-vector it is designed to contain mostly information relevantto the target task (LID). In order to obtain these embeddings, wetrain a deep neural network (DNN) with sequence summarizationlayer to classify languages. In particular, we trained a DNN basedon bidirectional long short-term memory (BLSTM) recurrent neuralnetwork (RNN) layers, whose frame-by-frame outputs are summarizedinto mean and standard deviation statistics. After this poolinglayer, we add two fully connected layers whose outputs correspondto embeddings. Finally, we add a softmax output layer and train thewhole network with multi-class cross-entropy objective to discriminatebetween languages. We report our results on NIST LRE 2015and we compare the performance of embeddings and correspondingi-vectors both modeled by Gaussian Linear Classifier (GLC). Usingonly embeddings resulted in comparable performance to i-vectorsand by performing score-level fusion we achieved 7.3% relativeimprovement over the baseline.
Anglický abstrakt
Klíčová slova
Embeddings, language recognition, LID, DNN
Klíčová slova v angličtině
Autoři
Rok RIV
2019
Vydáno
15.04.2018
Nakladatel
IEEE Signal Processing Society
Místo
Calgary
ISBN
978-1-5386-4658-8
Kniha
Proceedings of ICASSP 2018
Strany od
5184
Strany do
5188
Strany počet
5
URL
https://www.fit.vut.cz/research/publication/11723/
BibTex
@inproceedings{BUT155045, author="Alicia {Lozano Díez} and Oldřich {Plchot} and Pavel {Matějka} and Joaquin {Gonzalez-Rodriguez}", title="DNN Based Embeddings for Language Recognition", booktitle="Proceedings of ICASSP 2018", year="2018", pages="5184--5188", publisher="IEEE Signal Processing Society", address="Calgary", doi="10.1109/ICASSP.2018.8462403", isbn="978-1-5386-4658-8", url="https://www.fit.vut.cz/research/publication/11723/" }
Dokumenty
lozano_icassp2018_0005184