Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
KARAFIÁT, M.; BASKAR, M.; VESELÝ, K.; GRÉZL, F.; BURGET, L.; ČERNOCKÝ, J.
Originální název
Analysis of Multilingual BLSTM Acoustic Model on Low and High Resource Languages
Anglický název
Druh
Stať ve sborníku v databázi WoS či Scopus
Originální abstrakt
The paper provides an analysis of automatic speech recognitionsystems (ASR) based on multilingual BLSTM, where weused multi-task training with separate classification layer foreach language. The focus is on low resource languages, whereonly a limited amount of transcribed speech is available. Insuch scenario, we found it essential to train the ASR systemsin a multilingual fashion and we report superior resultsobtained with pre-trained multilingual BLSTM on this task.The high resource languages are also taken into account andwe show the importance of language richness for multilingualtraining. Next, we present the performance of this techniqueas a function of amount of target language data. The importanceof including context information into BLSTM multilingualsystems is also stressed, and we report increased resilienceof large NNs to overtraining in case of multi-tasktraining.
Anglický abstrakt
Klíčová slova
Automatic speech recognition, Multilingualneural networks, Bidirectional Long Short Term Memory
Klíčová slova v angličtině
Autoři
Rok RIV
2019
Vydáno
15.04.2018
Nakladatel
IEEE Signal Processing Society
Místo
Calgary
ISBN
978-1-5386-4658-8
Kniha
Proceedings of ICASSP 2018
Strany od
5789
Strany do
5793
Strany počet
5
URL
https://www.fit.vut.cz/research/publication/11720/
BibTex
@inproceedings{BUT155042, author="Martin {Karafiát} and Murali Karthick {Baskar} and Karel {Veselý} and František {Grézl} and Lukáš {Burget} and Jan {Černocký}", title="Analysis of Multilingual BLSTM Acoustic Model on Low and High Resource Languages", booktitle="Proceedings of ICASSP 2018", year="2018", pages="5789--5793", publisher="IEEE Signal Processing Society", address="Calgary", doi="10.1109/ICASSP.2018.8462083", isbn="978-1-5386-4658-8", url="https://www.fit.vut.cz/research/publication/11720/" }
Dokumenty
karafiat_icassp2018_0005789