Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
GROCHOL, D.; SEKANINA, L.
Originální název
Fast Reconfigurable Hash Functions for Network Flow Hashing in FPGAs
Anglický název
Druh
Stať ve sborníku v databázi WoS či Scopus
Originální abstrakt
Efficient monitoring of high speed computer networks operating with a 100 Gigabit per second (Gbps) data throughput requires a suitable hardware acceleration of its key components. We present a platform capable of automated design of hash functions suitable for network flow hashing. The platform employs a multi-objective linear genetic programming developed for the hash function design. We evolved high-quality hash functions and implemented them in a field programmable gate array (FPGA). Several evolved hash functions were combined together in order to form a new reconfigurable hash function. The proposed reconfigurable design significantly reduces the area on a chip while the maximum operation frequency remains very close to the fastest hash functions. Properties of evolved hash functions were compared with the state-of-the-art hash functions in terms of the quality of hashing, area and operation frequency in the FPGA.
Anglický abstrakt
Klíčová slova
hash function, FPGA, genetic programming, network flow
Klíčová slova v angličtině
Autoři
Rok RIV
2019
Vydáno
15.06.2018
Nakladatel
Institute of Electrical and Electronics Engineers
Místo
Edinburgh
ISBN
978-1-5386-7753-7
Kniha
Proceedings of the 2018 NASA/ESA Conference on Adaptive Hardware and Systems
Strany od
257
Strany do
263
Strany počet
7
URL
https://www.fit.vut.cz/research/publication/11706/
BibTex
@inproceedings{BUT155031, author="David {Grochol} and Lukáš {Sekanina}", title="Fast Reconfigurable Hash Functions for Network Flow Hashing in FPGAs", booktitle="Proceedings of the 2018 NASA/ESA Conference on Adaptive Hardware and Systems", year="2018", pages="257--263", publisher="Institute of Electrical and Electronics Engineers", address="Edinburgh", doi="10.1109/AHS.2018.8541401", isbn="978-1-5386-7753-7", url="https://www.fit.vut.cz/research/publication/11706/" }
Dokumenty
08541401ahs19_hash