Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
KADLUBIAK, K.; JAROŠ, J.; TREEBY, B.
Originální název
GPU-Accelerated simulation of elastic wave propagation
Anglický název
Druh
Stať ve sborníku v databázi WoS či Scopus
Originální abstrakt
Modeling of ultrasound waves propagation in hard biological materials such as bones and skull has a rapidly growing area of applications, e.g. brain cancer treatment planing, deep brain neurostimulation and neuromodulation, and opening blood brain barriers. Recently, we have developed a novel numerical model of elastic wave propagation based on the Kelvin-Voigt model accounting for linear elastic wave proration in heterogeneous absorption media. Although, the model offers unprecedented fidelity, its computational requirements have been prohibitive for realistic simulations. This paper presents an optimized version of the simulation model accelerated by the Nvidia CUDA language and deployed on the best GPUs including the Nvidia P100 accelerators present in the Piz Daint supercomputer. The native CUDA code reaches a speed-up of 5.4 when compared to the Matlab prototype accelerated by the Parallel Computing Toolbox running on the same GPU. Such reduction in computation time enables computation of large-scale treatment plans in terms of hours.
Anglický abstrakt
Klíčová slova
Ultrasound simulations, Elastic model, Pseudospectral methods, k-Wave toolbox, GPU
Klíčová slova v angličtině
Autoři
Rok RIV
2020
Vydáno
29.10.2018
Nakladatel
IEEE Computer Society
Místo
Orleans
ISBN
978-1-5386-7878-7
Kniha
Proceedings - 2018 International Conference on High Performance Computing and Simulation, HPCS 2018
Strany od
188
Strany do
195
Strany počet
8
URL
https://ieeexplore.ieee.org/document/8514349
BibTex
@inproceedings{BUT155002, author="Kristián {Kadlubiak} and Jiří {Jaroš} and Bradley {Treeby}", title="GPU-Accelerated simulation of elastic wave propagation", booktitle="Proceedings - 2018 International Conference on High Performance Computing and Simulation, HPCS 2018", year="2018", pages="188--195", publisher="IEEE Computer Society", address="Orleans", doi="10.1109/HPCS.2018.00044", isbn="978-1-5386-7878-7", url="https://ieeexplore.ieee.org/document/8514349" }
Dokumenty
HPCS 2018