Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
KONEČNÁ, K.
Originální název
The Priestley-Chao Estimator of Conditional Density with Uniformly Distributed Random Design
Anglický název
Druh
Článek WoS
Originální abstrakt
The present paper is focused on non-parametric estimation of conditional density. Conditional density can be regarded as a generalization of regression thus the kernel estimator of conditional density can be derived from the kernel estimator of the regression function. We concentrate on the Priestley-Chao estimator of conditional density with a random design presented by a uniformly distributed unconditional variable. The statistical properties of such an estimator are given. As the smoothing parameters have the most significant influence on the quality of the final estimate, the leave-one-out maximum likelihood method is proposed for their detection. Its performance is compared with the cross-validation method and with two alternatives of the reference rule method. The theoretical part is complemented by a simulation study.
Anglický abstrakt
Klíčová slova
Priestley-Chao estimator of conditional density, random design, uniform marginal density, bandwidth selection, maximum likelihood method, reference rule method
Klíčová slova v angličtině
Autoři
Rok RIV
2019
Vydáno
21.09.2018
Nakladatel
Český statistický úřad
Místo
Česká republika
ISSN
0322-788X
Periodikum
Statistika-Statistics and Economy Journal
Svazek
98
Číslo
3
Stát
Strany od
283
Strany do
294
Strany počet
307
URL
https://www.czso.cz/documents/10180/61266313/32019718q3283.pdf/a6025d1a-d8fc-4e3b-9846-3c16c7937288?version=1.0
Plný text v Digitální knihovně
http://hdl.handle.net/11012/178454
BibTex
@article{BUT150775, author="Kateřina {Pokorová}", title="The Priestley-Chao Estimator of Conditional Density with Uniformly Distributed Random Design", journal="Statistika-Statistics and Economy Journal", year="2018", volume="98", number="3", pages="283--294", issn="0322-788X", url="https://www.czso.cz/documents/10180/61266313/32019718q3283.pdf/a6025d1a-d8fc-4e3b-9846-3c16c7937288?version=1.0" }
Dokumenty
32019718q3283