Detail publikačního výsledku

An application of a diffeomorphism theorem to Volterra integral operator

DIBLÍK, J.; GALEWSKI, M.; KONIORCZYK, M.; SCHMEIDEL, E.

Originální název

An application of a diffeomorphism theorem to Volterra integral operator

Anglický název

An application of a diffeomorphism theorem to Volterra integral operator

Druh

Článek WoS

Originální abstrakt

Using global diffeomorphism theorem based on duality mapping and mountain geometry, we investigate the properties of the Volterra operator given pointwise for t is an element of [0,1] by V(x) (t) = x(t) + integral(t)(0) v(t, tau, x(tau))d tau, x(0) = 0.

Anglický abstrakt

Using global diffeomorphism theorem based on duality mapping and mountain geometry, we investigate the properties of the Volterra operator given pointwise for t is an element of [0,1] by V(x) (t) = x(t) + integral(t)(0) v(t, tau, x(tau))d tau, x(0) = 0.

Klíčová slova

diffeomorphism, Volterra integral operator, duality mapping

Klíčová slova v angličtině

diffeomorphism, Volterra integral operator, duality mapping

Autoři

DIBLÍK, J.; GALEWSKI, M.; KONIORCZYK, M.; SCHMEIDEL, E.

Rok RIV

2019

Vydáno

11.09.2018

Nakladatel

Khayyam Publishing, Inc.

ISSN

0893-4983

Periodikum

Differential and Integral Equations

Svazek

31

Číslo

7-8

Stát

Spojené státy americké

Strany od

621

Strany do

642

Strany počet

22

URL

BibTex

@article{BUT150427,
  author="Josef {Diblík} and Marek {Galewski} and Marcin {Koniorczyk} and Ewa {Schmeidel}",
  title="An application of a diffeomorphism theorem to Volterra integral operator",
  journal="Differential and Integral Equations",
  year="2018",
  volume="31",
  number="7-8",
  pages="621--642",
  issn="0893-4983",
  url="https://projecteuclid.org/euclid.die/1526004033"
}