Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
TŮMA, M.; JURA, P.
Originální název
Comparison of different approaches to continuous-time system identification from sampled data
Anglický název
Druh
Stať ve sborníku v databázi WoS či Scopus
Originální abstrakt
This article deals with different approaches to continuous-time system identification from sampled data. Continuous-time system identification is important problem in control theory. Continuous time models provide many advantages against discrete time models because of better physical insight into the system properties. The traditional approach with least squares method with state variable filters is presented. Two alternative approaches to continuous-time identification are proposed. The generalized Laguerre functions method and the method based on least squares estimation with numerical solution of differential equation are introduced. These three different approaches to continuous-time system identification from sampled data are compared on the example. It is shown that proposed alternative methods can give better results in terms of relative root mean square error of the outputs of the identified systems than the least squares method with state variable filters.
Anglický abstrakt
Klíčová slova
generalized Laguerre function, continuous-time LTI system, numerical integration, identification
Klíčová slova v angličtině
Autoři
Rok RIV
2019
Vydáno
17.11.2017
ISBN
978-1-5386-2085-4
Kniha
2017 European Conference on Electrical Engineering and Computer Science (EECS) (2017)
Strany od
61
Strany do
65
Strany počet
5
BibTex
@inproceedings{BUT150205, author="Martin {Tůma} and Pavel {Jura}", title="Comparison of different approaches to continuous-time system identification from sampled data", booktitle="2017 European Conference on Electrical Engineering and Computer Science (EECS) (2017)", year="2017", pages="61--65", doi="10.1109/EECS.2017.21", isbn="978-1-5386-2085-4" }