Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
RAJNOHA, M.; BURGET, R.; DUTTA, M.
Originální název
Handwriting Comenia Script Recognition with Convolutional Neural Network
Anglický název
Druh
Stať ve sborníku v databázi WoS či Scopus
Originální abstrakt
This paper deals with handwriting recognition (HWR) using artificial intelligence of so–called Comenia script - a modern handwritten font similar to block letters recently introduced at primary schools in the Czech Republic. This work describes a method how to extend a limited training set of handwritten letters and proposes a new method to increase stability and accuracy by artificially created image samples. We examined a large set of algorithms including a deep learning method for classification of the handwriting characters. The best results were achieved using a convolutional neural network, which achieved the accuracy or character recognition 90.04%
Anglický abstrakt
Klíčová slova
CNN; deep learning; handwriting recognition; HWR; OCR
Klíčová slova v angličtině
Autoři
Rok RIV
2018
Vydáno
06.07.2017
Místo
Barcelona
ISBN
978-1-5090-3981-4
Kniha
40th Anniversary of International Conference on Telecommunications and Signal Processing (TSP)
Strany od
775
Strany do
779
Strany počet
5
URL
https://ieeexplore.ieee.org/document/8076093
BibTex
@inproceedings{BUT137770, author="Martin {Rajnoha} and Radim {Burget} and Malay Kishore {Dutta}", title="Handwriting Comenia Script Recognition with Convolutional Neural Network", booktitle="40th Anniversary of International Conference on Telecommunications and Signal Processing (TSP)", year="2017", pages="775--779", address="Barcelona", doi="10.1109/TSP.2017.8076093", isbn="978-1-5090-3981-4", url="https://ieeexplore.ieee.org/document/8076093" }