Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
DIBLÍK, J.
Originální název
Positive solutions of nonlinear delayed differential equations with impulses
Anglický název
Druh
Článek WoS
Originální abstrakt
The paper is concerned with the long-term behavior of solutions to scalar nonlinear functional delayed differential equations $$\dot y(t)=-f(t,y_t),\,\,\,t\ge t_0. $$ It is assumed that $f\colon [t_0,\infty)\times {\cal C} \mapsto {\mathbb{R}}$ is a~continuous mapping satisfying a~local Lipschitz condition with respect to the second argument and ${\cal C}:={C}([-r,0],\mathbb{R})$, $r>0$ is the Banach space of conti\-nu\-ous functions. The problem is solved of the existence of positive solutions if the equation is subjected to impulses $y(t_s^+)=b_sy(t_s)$, $s=1,2,\dots$, where $t_0\le t_1< t_2<\dots$ and $b_s>0$, $s=1,2,\dots\,\,$. A criterion for the existence of positive solutions on $[t_0-r,\infty)$ is proved and their upper estimates are given. Relations to previous results are discussed as well.
Anglický abstrakt
Klíčová slova
Positive solution; large time behavior; delayed differential equation; impulse.
Klíčová slova v angličtině
Autoři
Rok RIV
2018
Vydáno
12.04.2017
Nakladatel
Elsevier
ISSN
0893-9659
Periodikum
Applied Mathematics Letters
Svazek
72
Číslo
10
Stát
Spojené státy americké
Strany od
16
Strany do
22
Strany počet
7
URL
https://doi.org/10.1016/j.aml.2017.04.004
BibTex
@article{BUT137191, author="Josef {Diblík}", title="Positive solutions of nonlinear delayed differential equations with impulses", journal="Applied Mathematics Letters", year="2017", volume="72", number="10", pages="16--22", doi="10.1016/j.aml.2017.04.004", issn="0893-9659", url="https://doi.org/10.1016/j.aml.2017.04.004" }