Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
ŘEHÁK, P.
Originální název
An asymptotic analysis of nonoscillatory solutions of q-difference equations via q-regular variation
Anglický název
Druh
Článek WoS
Originální abstrakt
We do a thorough asymptotic analysis of nonoscillatory solutions of the $q$-difference equation $D_q(r(t)D_q y(t))+p(t)y(qt)=0$ considered on the lattice $\{q^k:k\in\mathbb{N}_0\}$, $q>1$. We classify the solutions according to various aspects that take into account their asymptotic behavior. We show relations among the asymptotic classes. For every positive solution we establish asymptotic formulae. Several discrepancies are revealed, when comparing the results with their existing differential equations or difference equations counterparts; however, it should be noted that many of our observations in the $q$-case have not their continuous or discrete analogies yet. Important roles in our considerations are played by the theory of $q$-regular variation and various transformations. The results are illustrated by examples.
Anglický abstrakt
Klíčová slova
q-difference equation; nonoscillatory solution; monotone solution; asymptotic formula; regular variation
Klíčová slova v angličtině
Autoři
Rok RIV
2018
Vydáno
24.05.2017
ISSN
0022-247X
Periodikum
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS
Svazek
454
Číslo
2
Stát
Spojené státy americké
Strany od
829
Strany do
882
Strany počet
54
URL
https://doi.org/10.1016/j.jmaa.2017.05.034
BibTex
@article{BUT136766, author="Pavel {Řehák}", title="An asymptotic analysis of nonoscillatory solutions of q-difference equations via q-regular variation", journal="JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS", year="2017", volume="454", number="2", pages="829--882", doi="10.1016/j.jmaa.2017.05.034", issn="0022-247X", url="https://doi.org/10.1016/j.jmaa.2017.05.034" }