Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
KADLEC, P.; ŠEDĚNKA, V.
Originální název
Particle Swarm Optimization for Problems with Variable Number of Dimensions
Anglický název
Druh
Článek WoS
Originální abstrakt
Some real-life optimization problems show apart from the dependence on the combination of state variables also the dependence on the complexity of the model describing the problem. Changing model complexity implies changing the number of degrees of freedom (the number of decision space dimensions). A new method called Particle Swarm Optimization for Variable Number of Dimensions is developed here. The well-known particle swarm optimization procedure is modified to handle spaces with variable number of dimensions within a single run. Some well-known benchmark problems are modified to depend on the number of dimensions. Novel performance metrics are defined in the article to evaluate convergence properties of the method. Some recommendations for setting the optimization are made according to results of the method on the proposed benchmark test-suite. The method is compared with the conventional swarm strategies able to solve problems with variable number of dimensions.
Anglický abstrakt
Klíčová slova
model selection, particle swarm optimization, evolutionary optimization, variable number of dimensions
Klíčová slova v angličtině
Autoři
Rok RIV
2018
Vydáno
27.04.2017
Nakladatel
Taylor and Francis
Místo
Londýn, UK
ISSN
0305-215X
Periodikum
ENGINEERING OPTIMIZATION
Svazek
49
Číslo
4
Stát
Spojené království Velké Británie a Severního Irska
Strany od
382
Strany do
399
Strany počet
18
URL
http://dx.doi.org/10.1080/0305215X.2017.1316845
BibTex
@article{BUT134370, author="Petr {Kadlec} and Vladimír {Šeděnka}", title="Particle Swarm Optimization for Problems with Variable Number of Dimensions", journal="ENGINEERING OPTIMIZATION", year="2017", volume="49", number="4", pages="382--399", doi="10.1080/0305215X.2017.1316845", issn="0305-215X", url="http://dx.doi.org/10.1080/0305215X.2017.1316845" }