Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
KRBÁLEK, M.; APELTAUER, J.; APELTAUER, T.; SZABOVÁ, Z.
Originální název
Three methods for estimating a range of vehicular interactions
Anglický název
Druh
Článek WoS
Originální abstrakt
We present three different approaches how to estimate the number of preceding cars influencing a decision-making procedure of a given driver moving in saturated traffic flows. The first method is based on correlation analysis, the second one evaluates (quantitatively) deviations from the main assumption in the convolution theorem for probability, and the third one operates with advanced instruments of the theory of counting processes (statistical rigidity). We demonstrate that universally-accepted premise on short-ranged traffic interactions may not be correct. All methods introduced have revealed that minimum number of actively-followed vehicles is two. It supports an actual idea that vehicular interactions are, in fact, middle-ranged. Furthermore, consistency between the estimations used is surprisingly credible. In all cases we have found that the interaction range (the number of actively-followed vehicles) drops with traffic density. Whereas drivers moving in congested regimes with lower density (around 30 vehicles per kilometer) react on four or five neighbors, drivers moving in high-density flows respond to two predecessors only.
Anglický abstrakt
Klíčová slova
random matrix theory; traffic flow; spectral rigidity; drivers interaction
Klíčová slova v angličtině
Autoři
Rok RIV
2018
Vydáno
21.09.2017
Nakladatel
Elsevier Science BV
Místo
Amsterdam
ISSN
0378-4371
Periodikum
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS
Svazek
Číslo
491
Stát
Nizozemsko
Strany od
112
Strany do
126
Strany počet
15
URL
https://doi.org/10.1016/j.physa.2017.09.008
BibTex
@article{BUT131430, author="Milan {Krbálek} and Jiří {Apeltauer} and Tomáš {Apeltauer} and Zuzana {Szabová}", title="Three methods for estimating a range of vehicular interactions", journal="PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS", year="2017", volume="2018", number="491", pages="112--126", doi="10.1016/j.physa.2017.09.008", issn="0378-4371", url="https://doi.org/10.1016/j.physa.2017.09.008" }
Dokumenty
1-s2.0-S0378437117309019-main