Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
ŠLAPAL, J.
Originální název
Categorical aspects of inducing closure operators on graphs by sets of walks
Anglický název
Druh
Článek WoS
Originální abstrakt
We study closure operators on graphs which are induced by sets of walks of identical lengths in these graphs. It is shown that the induction gives rise to a Galois correspondence between the category of closure spaces and that of graphs with walk sets. We study the two isomorphic subcategories resulting from the correspondence, in particular, the one that is a full subcategory of the category of graphs with walk sets. As examples, we discuss closure operators that are induced by path sets on some natural graphs on the digital plane Z2. These closure operators are shown to include the well known Marcus-Wyse and Khalimsky topologies, thus indicating the possibility of using them as convenient background structures on the digital plane for the study of geometric and topological properties of digital images.
Anglický abstrakt
Klíčová slova
Simple graph, Path, Closure operator, Galois correspondence, Diagonal set of paths, Digital topology
Klíčová slova v angličtině
Autoři
Rok RIV
2019
Vydáno
08.06.2018
ISSN
0022-0000
Periodikum
JOURNAL OF COMPUTER AND SYSTEM SCIENCES
Svazek
2018
Číslo
95
Stát
Spojené státy americké
Strany od
143
Strany do
150
Strany počet
8
URL
https://www.sciencedirect.com/science/article/pii/S0022000017300247?via%3Dihub
BibTex
@article{BUT131358, author="Josef {Šlapal}", title="Categorical aspects of inducing closure operators on graphs by sets of walks", journal="JOURNAL OF COMPUTER AND SYSTEM SCIENCES", year="2018", volume="2018", number="95", pages="143--150", doi="10.1016/j.jcss.2017.02.005", issn="0022-0000", url="https://www.sciencedirect.com/science/article/pii/S0022000017300247?via%3Dihub" }
Dokumenty
JCSS2018