Detail publikačního výsledku

Geodesic Mappings Onto Riemannian Manifolds and Differentiability

HINTERLEITNER, I.; MIKEŠ, J.

Originální název

Geodesic Mappings Onto Riemannian Manifolds and Differentiability

Anglický název

Geodesic Mappings Onto Riemannian Manifolds and Differentiability

Druh

Článek WoS

Originální abstrakt

In this paper we study fundamental equations of geodesic mappings of manifolds with affine connection onto (pseudo-) Riemannian manifolds. We proved that if a manifolds with affine (or projective) connection of differentiability class C^r, where r great than or equal 2 admits a geodesic mapping onto a (pseudo-)Riemannian manifolds of diferentiable class, then this manifolds belongs to the differentiability class C^(r+1).

Anglický abstrakt

In this paper we study fundamental equations of geodesic mappings of manifolds with affine connection onto (pseudo-) Riemannian manifolds. We proved that if a manifolds with affine (or projective) connection of differentiability class C^r, where r great than or equal 2 admits a geodesic mapping onto a (pseudo-)Riemannian manifolds of diferentiable class, then this manifolds belongs to the differentiability class C^(r+1).

Klíčová slova

class of differentiability, geodesic mapping, manifold with affine connection, manifold with projective connection, (pseudo-) Riemannian manifold

Klíčová slova v angličtině

class of differentiability, geodesic mapping, manifold with affine connection, manifold with projective connection, (pseudo-) Riemannian manifold

Autoři

HINTERLEITNER, I.; MIKEŠ, J.

Rok RIV

2018

Vydáno

04.01.2017

Nakladatel

Bulgarian Academy of Sciences

Místo

Sofia, Bulgaria

Kniha

Geometry, Integrability and Quantization

ISSN

1314-3247

Periodikum

Geometry, Integrability and Quantization

Číslo

17

Stát

Bulharská republika

Strany od

183

Strany do

190

Strany počet

8

BibTex

@article{BUT131271,
  author="Irena {Hinterleitner} and Josef {Mikeš}",
  title="Geodesic Mappings Onto Riemannian Manifolds and Differentiability",
  journal="Geometry, Integrability and Quantization",
  year="2017",
  number="17",
  pages="183--190",
  doi="10.7546/giq-18-2017-183-190",
  issn="1314-3247"
}