Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
DVOŘÁČEK, P.; SEKANINA, L.
Originální název
Evolutionary Approximation of Edge Detection Circuits
Anglický název
Druh
Stať ve sborníku v databázi WoS či Scopus
Originální abstrakt
Approximate computing exploits the fact that many applications are inherently error resilient which means that some errors in their outputs can safely be exchanged for improving other parameters such as energy consumption or operation frequency. A new method based on evolutionary computing is proposed in this paper which enables to approximate edge detection circuits. Rather than evolving approximate edge detectors from scratch, key components of existing edge detector are replaced by their approximate versions obtained using Cartesian genetic programming (CGP). Various approximate edge detectors are then composed and their quality is evaluated using a database of images. The paper reports interesting edge detectors showing a good tradeoff between the quality of edge detection and implementation cost.
Anglický abstrakt
Klíčová slova
Edge detection circuits, Cartesian genetic programming, Evolutionary computation
Klíčová slova v angličtině
Autoři
Rok RIV
2017
Vydáno
30.03.2016
Nakladatel
Springer International Publishing
Místo
Berlin
ISBN
978-3-319-30667-4
Kniha
19th European Conference on Genetic programming
Edice
Lecture Notes in Computer Science
Svazek
9594
Strany od
19
Strany do
34
Strany počet
16
URL
https://www.fit.vut.cz/research/publication/10998/
BibTex
@inproceedings{BUT130921, author="Petr {Dvořáček} and Lukáš {Sekanina}", title="Evolutionary Approximation of Edge Detection Circuits", booktitle="19th European Conference on Genetic programming", year="2016", series="Lecture Notes in Computer Science", volume="9594", pages="19--34", publisher="Springer International Publishing", address="Berlin", doi="10.1007/978-3-319-30668-1\{_}2", isbn="978-3-319-30667-4", url="https://www.fit.vut.cz/research/publication/10998/" }
Dokumenty
dvor-sek-eurogp16