Detail publikačního výsledku

Stability of linear discrete systems with constant coefficients and single delay

BAŠTINEC, J.; MENCÁKOVÁ, K.

Originální název

Stability of linear discrete systems with constant coefficients and single delay

Anglický název

Stability of linear discrete systems with constant coefficients and single delay

Druh

Stať ve sborníku v databázi WoS či Scopus

Originální abstrakt

The paper investigates the exponential stability and exponential estimate of the norms of solutions to a linear system of difference equations with single delay x {k+1}=Ax( k)+Bx {k-m}, k=0,1, ..., where A, B are square constant matrices and m is natural. Sufficient conditions for exponential stability are derived using the method of Lyapunov functions and its efficiency is demonstrated by examples.

Anglický abstrakt

The paper investigates the exponential stability and exponential estimate of the norms of solutions to a linear system of difference equations with single delay x {k+1}=Ax( k)+Bx {k-m}, k=0,1, ..., where A, B are square constant matrices and m is natural. Sufficient conditions for exponential stability are derived using the method of Lyapunov functions and its efficiency is demonstrated by examples.

Klíčová slova

Stability; Lyapunov function; delay; discrete system; matrix equation.

Klíčová slova v angličtině

Stability; Lyapunov function; delay; discrete system; matrix equation.

Autoři

BAŠTINEC, J.; MENCÁKOVÁ, K.

Rok RIV

2017

Vydáno

08.06.2016

Nakladatel

University of Bialystok, Poland

Místo

Bialystok, Poland

ISBN

978-83-7431-478-7

Kniha

7th Podlasie Conference on Mathematics

Strany od

25

Strany do

26

Strany počet

2

BibTex

@inproceedings{BUT125920,
  author="Jaromír {Baštinec} and Kristýna {Mencáková}",
  title="Stability of linear discrete systems with constant coefficients and single delay",
  booktitle="7th Podlasie Conference on Mathematics",
  year="2016",
  pages="25--26",
  publisher="University of Bialystok, Poland",
  address="Bialystok, Poland",
  isbn="978-83-7431-478-7"
}