Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
MAŠEK, J.; BURGET, R.; POVODA, L.; DUTTA, M.
Originální název
Multi–GPU Implementation of Machine Learning Algorithm using CUDA and OpenCL
Anglický název
Druh
Článek recenzovaný mimo WoS a Scopus
Originální abstrakt
Using modern Graphic Processing Units (GPUs) becomes very useful for computing complex and time consuming processes. GPUs provide high–performance computation capabilities with a good price. This paper deals with a multi–GPU OpenCL and CUDA implementations of k–Nearest Neighbor (k– NN) algorithm. This work compares performances of OpenCL and CUDA implementations where each of them is suitable for different number of used attributes. The proposed CUDA algorithm achieves acceleration up to 880x in comparison with a single thread CPU version. The common k-NN was modified to be faster when the lower number of k neighbors is set. The performance of algorithm was verified with two GPUs dual-core NVIDIA GeForce GTX 690 and CPU Intel Core i7 3770 with 4.1 GHz frequency. The results of speed up were measured for one GPU, two GPUs, three and four GPUs. We performed several tests with data sets containing up to 4 million elements with various number of attributes.
Anglický abstrakt
Klíčová slova
Artificial intelligence, big data, comparison, CUDA, GPU, high performance computing, k-NN, multi–GPU, OpenCL.
Klíčová slova v angličtině
Autoři
Rok RIV
2017
Vydáno
10.06.2016
Nakladatel
International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems
ISSN
1805-5443
Periodikum
Svazek
5
Číslo
2
Stát
Česká republika
Strany od
101
Strany do
107
Strany počet
7
URL
http://ijates.org/index.php/ijates/article/view/142
BibTex
@article{BUT125826, author="Jan {Mašek} and Radim {Burget} and Lukáš {Povoda} and Malay Kishore {Dutta}", title="Multi–GPU Implementation of Machine Learning Algorithm using CUDA and OpenCL", journal="International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems", year="2016", volume="5", number="2", pages="101--107", doi="10.11601/ijates.v5i2.142", issn="1805-5443", url="http://ijates.org/index.php/ijates/article/view/142" }