Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
JELÍNEK, A.; ŽALUD, L.; JÍLEK, T.
Originální název
Fast total least squares vectorization
Anglický název
Druh
Článek WoS
Originální abstrakt
This paper proposes a novel algorithm for the vectorization of ordered sets of points, named Fast Total Least Squares (FTLS) vectorization. The emphasis was put on low computational complexity, which allows it to be run online on a mobile device at a speed comparable to the fastest algorithms, such as the Douglas–Peucker (DP) algorithm, while maintaining a much higher quality of the approximation. Our approach is based on the total least squares method, therefore all the points from the cloud contribute to its approximation. This leads to better utilization of the information contained in the point cloud, compared to those algorithms based on point elimination, such as DP. Several experiments and performance comparisons are presented to demonstrate the most important attributes of the FTLS algorithm.
Anglický abstrakt
Klíčová slova
Point cloud;Vectorization;Least squares;Robotics;Linear regression
Klíčová slova v angličtině
Autoři
Rok RIV
2018
Vydáno
01.04.2019
Nakladatel
Springer Berlin Heidelberg
ISSN
1861-8219
Periodikum
Journal of Real-Time Image Processing
Svazek
11
Číslo
1
Stát
Spolková republika Německo
Strany od
459
Strany do
475
Strany počet
17
URL
https://link.springer.com/article/10.1007/s11554-016-0562-6
BibTex
@article{BUT120961, author="Aleš {Jelínek} and Luděk {Žalud} and Tomáš {Jílek}", title="Fast total least squares vectorization", journal="Journal of Real-Time Image Processing", year="2019", volume="11", number="1", pages="459--475", doi="10.1007/s11554-016-0562-6", issn="1861-8200", url="https://link.springer.com/article/10.1007/s11554-016-0562-6" }