Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
LEHKÝ, D.; ŠOMODÍKOVÁ, M.
Originální název
Reliability Analysis of Post-Tensioned Bridge Using Artificial Neural Network-Based Surrogate Model
Anglický název
Druh
Stať ve sborníku v databázi WoS či Scopus
Originální abstrakt
The reliability analysis of complex structural systems requires utilization of approximation methods for calculation of reliability measures with the view of reduction of computational efforts to an acceptable level. The aim is to replace the original limit state function by an approximation, the so-called response surface, whose function values can be computed more easily. In the paper, an artificial neural network based response surface method in the combination with the small-sample simulation technique is introduced. An artificial neural network is used as a surrogate model for approximation of original limit state function. Efficiency is emphasized by utilization of the stratified simulation for the selection of neural network training set elements. The proposed method is employed for reliability assessment of post-tensioned composite bridge. Response surface obtained is independent of the type of distribution or correlations among the basic variables.
Anglický abstrakt
Klíčová slova
Artificial neural network, Latin hypercube sampling, Response surface method, Reliability, Failure probability, Load-bearing capacity
Klíčová slova v angličtině
Autoři
Rok RIV
2016
Vydáno
25.09.2015
Nakladatel
L. Iliadis and Ch. Jayne
Místo
Rhodos, Řecko
ISBN
978-3-319-23983-5
Kniha
Engineering Applications of Neural Networks, Proceedings of the 16th International Conference, EANN 2015, Rhodes, Greece, September 25–28, 2015
Strany od
35
Strany do
44
Strany počet
10
Plný text v Digitální knihovně
http://hdl.handle.net/
BibTex
@inproceedings{BUT120715, author="David {Lehký} and Martina {Sadílková Šomodíková}", title="Reliability Analysis of Post-Tensioned Bridge Using Artificial Neural Network-Based Surrogate Model", booktitle="Engineering Applications of Neural Networks, Proceedings of the 16th International Conference, EANN 2015, Rhodes, Greece, September 25–28, 2015", year="2015", pages="35--44", publisher="L. Iliadis and Ch. Jayne", address="Rhodos, Řecko", isbn="978-3-319-23983-5" }