Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
ČERMÁK, J.; NECHVÁTAL, L.; GYŐRI, I.
Originální název
On explicit stability conditions for a linear fractional difference system
Anglický název
Druh
Článek WoS
Originální abstrakt
The paper describes the stability area for an autonomous difference system with the Caputo and Riemann-Liouville forward difference operator whose order is between 0 and 1. Contrary to the existing result on this topic, our stability conditions are fully explicit and involve the decay rate of the solutions. Some comparisons, consequences and illustrated examples are presented as well.
Anglický abstrakt
Klíčová slova
fractional-order difference system; Caputo difference operator; Riemann-Liouville difference operator; asymptotic stability
Klíčová slova v angličtině
Autoři
Rok RIV
2016
Vydáno
30.06.2015
Nakladatel
Walter de Gruyter GmbH, Berlin/Boston
Místo
Berlin, Germany
ISSN
1311-0454
Periodikum
Fractional Calculus and Applied Analysis
Svazek
18
Číslo
3
Stát
Bulharská republika
Strany od
651
Strany do
672
Strany počet
22
URL
http://www.degruyter.com/view/j/fca.2015.18.issue-3/issue-files/fca.2015.18.issue-3.xml
BibTex
@article{BUT117956, author="Jan {Čermák} and Luděk {Nechvátal} and István {Győri}", title="On explicit stability conditions for a linear fractional difference system", journal="Fractional Calculus and Applied Analysis", year="2015", volume="18", number="3", pages="651--672", doi="10.1515/fca-2015-0040", issn="1311-0454", url="http://www.degruyter.com/view/j/fca.2015.18.issue-3/issue-files/fca.2015.18.issue-3.xml" }