Detail publikačního výsledku

From lattices to H_v -matrices

KŘEHLÍK, Š.; NOVÁK, M.

Originální název

From lattices to H_v -matrices

Anglický název

From lattices to H_v -matrices

Druh

Článek WoS

Originální abstrakt

In this paper we study the concept of sets of elements, related to results of an associative binary operation. We discuss this issue in the context of matrices and lattices. First of all, we define hyperoperations similar to those used when constructing hyperstructures from quasi-ordered semigroups. This then enables us to show that if entries of matrices are elements of lattices, these considerations provide a natural link between matrices, some basic concepts of the hyperstructure theory including $H_v$--rings and $H_v$--matrices and also one recent construction of hyperstructures.

Anglický abstrakt

In this paper we study the concept of sets of elements, related to results of an associative binary operation. We discuss this issue in the context of matrices and lattices. First of all, we define hyperoperations similar to those used when constructing hyperstructures from quasi-ordered semigroups. This then enables us to show that if entries of matrices are elements of lattices, these considerations provide a natural link between matrices, some basic concepts of the hyperstructure theory including $H_v$--rings and $H_v$--matrices and also one recent construction of hyperstructures.

Klíčová slova

Distributive lattice, $H_v$--matrix, $H_v$--ring, Join space, Partially ordered semigroup

Klíčová slova v angličtině

Distributive lattice, $H_v$--matrix, $H_v$--ring, Join space, Partially ordered semigroup

Autoři

KŘEHLÍK, Š.; NOVÁK, M.

Rok RIV

2017

Vydáno

09.12.2016

ISSN

1224-1784

Periodikum

Analele Stiintifice ale Universitatii Ovidius Constanta-Seria Matematica

Svazek

XXIV

Číslo

3

Stát

Rumunsko

Strany od

209

Strany do

222

Strany počet

14

URL

BibTex

@article{BUT116986,
  author="Štěpán {Křehlík} and Michal {Novák}",
  title="From lattices to H_v -matrices",
  journal="Analele Stiintifice ale Universitatii Ovidius Constanta-Seria Matematica",
  year="2016",
  volume="XXIV",
  number="3",
  pages="209--222",
  doi="10.1515/auom-2016-0055",
  issn="1224-1784",
  url="http://www.anstuocmath.ro/mathematics//Anale2016Vvol3/10_Krehlik_S.__Novak_M..pdf"
}