Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
KISELA, T.; ČERMÁK, J.
Originální název
Asymptotic Stability Of Dynamic Equations With Two Fractional Terms: Continuous Versus Discrete Case
Anglický název
Druh
Článek WoS
Originální abstrakt
The paper discusses asymptotic stability conditions for the linear fractional difference equation ∇αy(n) + a∇βy(n) + by(n) = 0 with real coefficients a, b and real orders α > β > 0 such that α/β is a rational number. For given α, β, we describe various types of discrete stability regions in the (a, b)-plane and compare them with the stability regions recently derived for the underlying continuous pattern Dαx(t) + aDβx(t) + bx(t) = 0 involving two Caputo fractional derivatives. Our analysis shows that discrete stability sets are larger and their structure much more rich than in the case of the continuous counterparts.
Anglický abstrakt
Klíčová slova
fractional differential equation; fractional difference equation; asymptotic stability; fractional Schur-Cohn criterion
Klíčová slova v angličtině
Autoři
Rok RIV
2016
Vydáno
30.04.2015
ISSN
1311-0454
Periodikum
Fractional Calculus and Applied Analysis
Svazek
18
Číslo
2
Stát
Bulharská republika
Strany od
437
Strany do
458
Strany počet
22
BibTex
@article{BUT115854, author="Tomáš {Kisela} and Jan {Čermák}", title="Asymptotic Stability Of Dynamic Equations With Two Fractional Terms: Continuous Versus Discrete Case", journal="Fractional Calculus and Applied Analysis", year="2015", volume="18", number="2", pages="437--458", doi="10.1515/fca-2015-0028", issn="1311-0454" }