Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
KISELA, T.; ČERMÁK, J.
Originální název
Stability properties of two-term fractional differential equations
Anglický název
Druh
Článek WoS
Originální abstrakt
This paper formulates explicit necessary and sufficient conditions for the local asymptotic stability of equilibrium points of the fractional differential equation Dα y(t) + f (y(t), Dβ y(t)) = 0, t > 0 involving two Caputo derivatives of real orders α>β such that α/β is a rational number. First, we consider this equation in the linearized form and derive optimal stability conditions in terms of its coefficients and orders α, β. As a byproduct, a special fractional version of the Routh–Hurwitz criterion is established. Then, using the recent developments on linearization methods in fractional dynamical systems, we extend these results to the original nonlinear equation. Some illustrating examples, involving significant linear and nonlinear fractional differential equations, support these results.
Anglický abstrakt
Klíčová slova
Fractional differential equation; Caputo derivative; Asymptotic stability; Equilibrium point
Klíčová slova v angličtině
Autoři
Rok RIV
2016
Vydáno
09.05.2015
ISSN
0924-090X
Periodikum
NONLINEAR DYNAMICS
Svazek
80
Číslo
4
Stát
Spojené státy americké
Strany od
1673
Strany do
1684
Strany počet
12
BibTex
@article{BUT115853, author="Tomáš {Kisela} and Jan {Čermák}", title="Stability properties of two-term fractional differential equations", journal="NONLINEAR DYNAMICS", year="2015", volume="80", number="4", pages="1673--1684", doi="10.1007/s11071-014-1426-x", issn="0924-090X" }