Detail publikačního výsledku

Geodesic Mappings and Differentiability of Metrics, Affne and Projective Connections

HINTERLEITNER, I.; MIKEŠ, J.

Originální název

Geodesic Mappings and Differentiability of Metrics, Affne and Projective Connections

Anglický název

Geodesic Mappings and Differentiability of Metrics, Affne and Projective Connections

Druh

Článek WoS

Originální abstrakt

In this paper we study fundamental equations of geodesic mappings of manifolds with affne and projective connection onto (pseudo-) Riemannian manifolds with respect to the smoothness class of these geometric objects. We prove that the natural smoothness class of these problems is preserved.

Anglický abstrakt

In this paper we study fundamental equations of geodesic mappings of manifolds with affne and projective connection onto (pseudo-) Riemannian manifolds with respect to the smoothness class of these geometric objects. We prove that the natural smoothness class of these problems is preserved.

Klíčová slova

geodesic mapping, (pseudo-) Riemannian manifold, affine connection, projective connection, smoothness class

Klíčová slova v angličtině

geodesic mapping, (pseudo-) Riemannian manifold, affine connection, projective connection, smoothness class

Autoři

HINTERLEITNER, I.; MIKEŠ, J.

Rok RIV

2016

Vydáno

05.05.2015

Nakladatel

Faculty of Sciences and Mathematics, University of Niš

Místo

University of Niš, Serbia

ISSN

0354-5180

Periodikum

Filomat

Svazek

29

Číslo

6

Stát

Srbská republika

Strany od

1245

Strany do

1249

Strany počet

5

BibTex

@article{BUT114729,
  author="Irena {Hinterleitner} and Josef {Mikeš}",
  title="Geodesic Mappings and Differentiability of Metrics, Affne and Projective Connections",
  journal="Filomat",
  year="2015",
  volume="29",
  number="6",
  pages="1245--1249",
  doi="10.2298/FIL1506245H",
  issn="0354-5180"
}