Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
GABOR, G.; RUSZKOWSKI, S.; VÍTOVEC, J.
Originální název
Ważewski type theorem for non-autonomous systems of equations with a disconnected set of egress points
Anglický název
Druh
Článek WoS
Originální abstrakt
In this paper we study an asymptotic behaviour of solutions of nonlinear dynamic systems on time scales of the form $$y^{\Delta}(t)=f(t,y(t)),$$ where $f\colon\mathbb{T}\times\mathbb{R}^n\rightarrow\mathbb{R}^n$, and $\mathbb{T}$ is a time scale. For a given set $\Omega\subset\mathbb{T}\times\R^{n}$, we formulate conditions for function $f$ which guarantee that at least one solution $y$ of the above system stays in $\Omega$. Unlike previous papers the set $\Omega$ is considered in more general form, i.e., the time section $\Omega_t$ is an arbitrary closed bounded set homeomorphic to the disk (for every $t\in\mathbb{T}$) and the boundary $\partial_\mathbb{T}\Omega$ does not contain only egress points. Thanks to this, we can investigate a substantially wider range of equations with various types of bounded solutions. A relevant example is considered. The results are new also for non-autonomous systems of difference equations and the systems of impulsive differential equations.
Anglický abstrakt
Klíčová slova
Time scale; Dynamic system; Non-autonomous system; Difference equation; Asymptotic behavior of solution; Retract method
Klíčová slova v angličtině
Autoři
Rok RIV
2016
Vydáno
02.06.2015
ISSN
0096-3003
Periodikum
APPLIED MATHEMATICS AND COMPUTATION
Svazek
265
Číslo
6
Stát
Spojené státy americké
Strany od
358
Strany do
369
Strany počet
12
URL
http://www.sciencedirect.com/science/article/pii/S009630031500644X
Plný text v Digitální knihovně
http://hdl.handle.net/
BibTex
@article{BUT114696, author="Jiří {Vítovec} and Grzegorz {Gabor} and Sebastian {Ruszkowski}", title="Ważewski type theorem for non-autonomous systems of equations with a disconnected set of egress points", journal="APPLIED MATHEMATICS AND COMPUTATION", year="2015", volume="265", number="6", pages="358--369", doi="10.1016/j.amc.2015.05.027", issn="0096-3003", url="http://www.sciencedirect.com/science/article/pii/S009630031500644X" }