Detail publikačního výsledku

A note on explicit criteria for the existence of positive solutions to the linear advanced equation \dot (t) = c(t)x(t + \tau).

DIBLÍK, J.

Originální název

A note on explicit criteria for the existence of positive solutions to the linear advanced equation \dot (t) = c(t)x(t + \tau).

Anglický název

A note on explicit criteria for the existence of positive solutions to the linear advanced equation \dot (t) = c(t)x(t + \tau).

Druh

Článek WoS

Originální abstrakt

The paper investigates a linear differential equation with advanced argument \dot (t) = c(t)x(t + \tau), where \tau > 0 and the function c: [t_0,\infty) \to (0,\infty), t_0 \in R is bounded and locally Lipschitz continuous. New explicit criteria for the existence of a positive solution in terms of c and \tau are derived. An overview of known relevant criteria is provided and relevant comparisons are also given.

Anglický abstrakt

The paper investigates a linear differential equation with advanced argument \dot (t) = c(t)x(t + \tau), where \tau > 0 and the function c: [t_0,\infty) \to (0,\infty), t_0 \in R is bounded and locally Lipschitz continuous. New explicit criteria for the existence of a positive solution in terms of c and \tau are derived. An overview of known relevant criteria is provided and relevant comparisons are also given.

Klíčová slova

advanced argument, linear differential equation, positive solution, explicit criterion

Klíčová slova v angličtině

advanced argument, linear differential equation, positive solution, explicit criterion

Autoři

DIBLÍK, J.

Rok RIV

2017

Vydáno

03.11.2014

Nakladatel

PERGAMON-ELSEVIER SCIENCE LTD

Místo

THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND

ISSN

0893-9659

Periodikum

Applied Mathematics Letters

Svazek

35

Číslo

2014

Stát

Spojené státy americké

Strany od

72

Strany do

76

Strany počet

5

URL

BibTex

@article{BUT111847,
  author="Josef {Diblík}",
  title="A note on explicit criteria for the existence of positive solutions to the linear advanced equation \dot (t) = c(t)x(t + \tau).",
  journal="Applied Mathematics Letters",
  year="2014",
  volume="35",
  number="2014",
  pages="72--76",
  doi="10.1016/j.aml.2013.11.010",
  issn="0893-9659",
  url="http://www.sciencedirect.com/science/article/pii/S0893965913003455"
}