Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
ŠANDERA, P.; POKLUDA, J.; SCHÖBERL, T.; HORNÍKOVÁ, J.; ČERNÝ, M.
Originální název
Modeling Load-displacement Curve and Pop-in Effect in Nanoindentation Tests
Anglický název
Druh
Článek WoS
Originální abstrakt
The nanoindentation test of a single crystal of tungsten is simulated by a multiscale model based on a nonlinear elastic finite element analysis coupled with both ab initio calculations of the ideal shear strength and crystallographic considerations. The onset of microplasticity, associated with the pop-in effect identified in experimental nanoindentation tests (creation of first dislocations), is assumed to be related to the moment of achieving the value of the ideal shear strength for the copper crystal under a superimposed hydrostatic stress. The calculated value of the critical indentation depth is in a very good correspondence with that of the experimentally observed pop-in on the load-displacement curve. The value of the Young modulus of tungsten received from the reduced modulus of elasticity of the original Hertz model is also in an excellent agreement with experimental data. This offers us a possibility to assess the concentration of alloying and impurity elements in the surface and sub-surface layers.
Anglický abstrakt
Klíčová slova
Nanoindentation; Ab initio calculation; Ideal shear strength; Tungsten crystal; Finite element analysis
Klíčová slova v angličtině
Autoři
Rok RIV
2015
Vydáno
01.01.2014
Nakladatel
Elsevier
ISSN
2211-8128
Periodikum
Procedia Materials Science
Svazek
3
Číslo
1
Stát
Nizozemsko
Strany od
1111
Strany do
1116
Strany počet
6
BibTex
@article{BUT111352, author="Pavel {Šandera} and Jaroslav {Pokluda} and Thomas {Schöberl} and Jana {Horníková} and Miroslav {Černý}", title="Modeling Load-displacement Curve and Pop-in Effect in Nanoindentation Tests", journal="Procedia Materials Science", year="2014", volume="3", number="1", pages="1111--1116", doi="10.1016/j.mspro.2014.06.181", issn="2211-8128" }