Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
DIBLÍK, J.; VÍTOVEC, J.
Originální název
Asymptotic behavior of solutions of systems of dynamic equations on time scales in a set whose boundary is a combination of strict egress and strict ingress points
Anglický název
Druh
Článek WoS
Originální abstrakt
In this paper we study the asymptotic behavior of solutions of nonlinear dynamic systems on time scales of the form $$y^\Delta(t)=f(t,y(t)),$$ where $f\colon\mathbb{T}\times\mathbb{R}^n\rightarrow\mathbb{R}^n$ and $\mathbb{T}$ is a time scale. For a given set $\Omega\subset\mathbb{T}\times\mathbb{R}^{n}$, we formulate the conditions for function $f$, which guarantee that at least one solution $y$ of the above system stays in $\Omega$. The dimension of the space of initial data generating such solutions is discussed and perturbed linear systems are considered as well. A linear system with singularity at infinity is considered as an example.
Anglický abstrakt
Klíčová slova
Time scale; Dynamic system; Asymptotic behavior of solution; Retract; Retraction; Lyapunov method
Klíčová slova v angličtině
Autoři
Rok RIV
2015
Vydáno
04.06.2014
ISSN
0096-3003
Periodikum
APPLIED MATHEMATICS AND COMPUTATION
Svazek
238
Číslo
6
Stát
Spojené státy americké
Strany od
289
Strany do
299
Strany počet
11
URL
http://www.sciencedirect.com/science/article/pii/S0096300314005451
BibTex
@article{BUT107428, author="Josef {Diblík} and Jiří {Vítovec}", title="Asymptotic behavior of solutions of systems of dynamic equations on time scales in a set whose boundary is a combination of strict egress and strict ingress points", journal="APPLIED MATHEMATICS AND COMPUTATION", year="2014", volume="238", number="6", pages="289--299", doi="10.1016/j.amc.2014.04.021", issn="0096-3003", url="http://www.sciencedirect.com/science/article/pii/S0096300314005451" }