Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail projektu
Období řešení: 1.6.2020 — 30.11.2022
Zdroje financování
Evropská unie - Horizon 2020
O projektu
Advanced automation support developed in Wave 1 of SESAR IR includes using of automatic speech recognition (ASR) to reduce the amount of manual data inputs by air-traffic controllers. Evaluation of controllers feedback has been subdued due to the limited recognition performance of the commercial of the shell ASR engines that were used, even in laboratory conditions. The reasons for the unsatisfactory conclusions include e.g. inability to distinguish controllers accents, deviations from standard phraseology and limited real-time recognition performance. Past exploratory research funded project MALORCA, however, has shown (on restricted use-cases) that satisfactory performance can be reached with novel datadriven machine learning approaches. Based on the results of MALORCA HAAWAII project aims to research and develop a reliable, error resilient and adaptable solution to automatically transcribe voice commands issued by both air-traffic controllers and pilots. The project will build on very large collection of data, organized with a minimum expert effort to develop a new set of models for complex environments of Icelandic en-route and London TMA. HAAWAII aims to perform proof-of-concept trials in challenging environments, i.e. to be directly connected with real-life data from ops room. As pilot read-back error detection is the main application, HAAWAII aims to significantly enhance the validity of the speech recognition models. The proposed work goes far beyond the work planned for the Wave 2 IR programme and will improve both safety and reduce controllers workload. The digitization of controller and pilot voice utterances can be used for a wide variety of safety and performance related benefits including, but not limiting to pre-fill entries into electronic flight strips and CPDLC messages. Another application demonstrated during proof-of-concept will be to objectively estimate controllers workload utilising digitized voice recordings of the complex London TMA.
Popis českyCílem projektu je výzkum a vývoj spolehlivého, proti chybám odolného a přizpůsobitelného řešení pro automatický přepis hlasových příkazů vyřčených jak pracovníky řízení letového provozu, tak piloty.
Klíčová slova Artificial Intelligence , Machine Learning, Air-Traffic Control, Natural Language Processing, Automatic Speech Recognition,
Klíčová slova českyumělá inteligence, strojové učení, řízení letového provozu, zpracování přirozeného jazyka, automatické rozpoznávání řeči
Označení
H2020-SESAR-2019-2
Originální jazyk
angličtina
Řešitelé
Smrž Pavel, doc. RNDr., Ph.D. - hlavní řešitelDoležal Jan, Ing. - spoluřešitelDytrych Jaroslav, Ing., Ph.D. - spoluřešitelHradiš Michal, Ing., Ph.D. - spoluřešitelJírovec Martin, Ing. - spoluřešitelMusil Martin, Ing., Ph.D. - spoluřešitelOtrusina Lubomír, Ing. - spoluřešitelVeselý Karel, Ing., Ph.D. - spoluřešitel
Útvary
Ústav počítačové grafiky a multimédií- odpovědné pracoviště (28.1.2020 - nezadáno)Výzkumná skupina znalostních technologií- interní (28.1.2020 - 30.11.2022)Ústav počítačové grafiky a multimédií- příjemce (28.1.2020 - 30.11.2022)
Výsledky
PRASAD, A.; ZULUAGA-GOMEZ, J.; MOTLÍČEK, P.; SARFJOO, S.; NIGMATULINA, I.; OHNEISER, O.; HELMKE, H. Grammar Based Speaker Role Identification for Air Traffic Control Speech Recognition. Proceedings of the 12th SESAR Innovation Days. Budapest: 2022. p. 1-9. Detail
KLEINERT, M.; HELMKE, H.; SHETTY, S.; OHNEISER, O.; EHR, H.; PRASAD, A.; MOTLÍČEK, P.; HARFMANN, J. Automated Interpretation of Air Traffic Control Communication: The Journey from Spoken Words to a Deeper Understanding of the Meaning. In Proceedings of DASC 2021. San Antonio, Texas: Institute of Electrical and Electronics Engineers, 2021. p. 1-9. ISBN: 978-1-6654-3420-1.Detail
MOTLÍČEK, P.; PRASAD, A.; NIGMATULINA, I.; HELMKE, H.; OHNEISER, O.; KLEINERT, M. Automatic Speech Analysis Framework for ATC Communication in HAAWAII. In SESAR Innovation Days. SESAR Innovation Days. Seville: SESAR Joint Undertaking, 2023. no. 11, p. 1-9. ISSN: 0770-1268.Detail
PRASAD, A.; ZULUAGA-GOMEZ, J.; MOTLÍČEK, P.; SARFJOO, S.; NIGMATULINA, I.; VESELÝ, K. Speech and Natural Language Processing Technologies for Pseudo-Pilot Simulator. Proceedings of the 12th SESAR Innovation Days. Budapest: 2022. p. 1-9. Detail
ZULUAGA-GOMEZ, J.; SARFJOO, S.; PRASAD, A.; NIGMATULINA, I.; MOTLÍČEK, P.; ONDŘEJ, K.; OHNEISER, O.; HELMKE, H. BERTraffic: BERT-based Joint Speaker Role and Speaker Change Detection for Air Traffic Control Communications. In IEEE Spoken Language Technology Workshop, SLT 2022 - Proceedings. Doha: IEEE Signal Processing Society, 2023. p. 633-640. ISBN: 978-1-6654-7189-3.Detail
HELMKE, H.; ONDŘEJ, K.; SHETTY, S.; KLEINERT, M.; OHNEISER, O.; EHR, H.; ZULUAGA-GOMEZ, J.; SMRŽ, P. Readback Error Detection by Automatic Speech Recognition and Understanding - Results of HAAWAII project for Isavia's Enroute Airspace. SESAR Innovation Days 2022. Budapest: 2022. p. 1-9. Detail
NIGMATULINA, I.; ZULUAGA-GOMEZ, J.; PRASAD, A.; SARFJOO, S.; MOTLÍČEK, P. A Two-Step Approach to Leverage Contextual Data: Speech Recognition in Air-Traffic Communications. In ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings. Singapore: IEEE Signal Processing Society, 2022. p. 6282-6286. ISBN: 978-1-6654-0540-9.Detail
HELMKE, H.; SHETTY, S.; KLEINERT, M.; OHNEISER, O.; EHR, H.; MOTLÍČEK, P.; PRASAD, A.; WINDISCH, C. Measuring Speech Recognition And Understanding Performance in Air Traffic Control Domain Beyond Word Error Rates. In Proceedings of 11th SESAR Innovation Days 2021. Belgie: 2021. p. 1-8. Detail
HELMKE, H.; KLEINERT, M.; SHETTY, S.; OHNEISER, O.; EHR, H.; PRASAD, A.; MOTLÍČEK, P.; VESELÝ, K.; ONDŘEJ, K.; SMRŽ, P.; HARFMANN, J.; WINDISCH, C. Readback Error Detection by Automatic Speech Recognition to Increase ATM Safety. In Proceedings of ATM Seminar. on-line: EUROPEAN ORGANISATION FOR THE SAFETY OF AIR NAVIGATION, 2021. p. 1-10. Detail
KOCOUR, M.; ŽMOLÍKOVÁ, K.; ONDEL YANG, L.; ŠVEC, J.; DELCROIX, M.; OCHIAI, T.; BURGET, L.; ČERNOCKÝ, J. Revisiting joint decoding based multi-talker speech recognition with DNN acoustic model. In Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH. Proceedings of Interspeech. Incheon: International Speech Communication Association, 2022. no. 9, p. 4955-4959. ISSN: 1990-9772.Detail
ZULUAGA-GOMEZ, J.; NIGMATULINA, I.; PRASAD, A.; MOTLÍČEK, P.; VESELÝ, K.; KOCOUR, M.; SZŐKE, I. Contextual Semi-Supervised Learning: An Approach to Leverage Air-Surveillance and Untranscribed ATC Data in ASR Systems. In Proceedings Interspeech 2021. Proceedings of Interspeech. Brno: International Speech Communication Association, 2021. no. 8, p. 3296-3300. ISSN: 1990-9772.Detail
KOCOUR, M.; VESELÝ, K.; BLATT, A.; ZULUAGA-GOMEZ, J.; SZŐKE, I.; ČERNOCKÝ, J.; KLAKOW, D.; MOTLÍČEK, P. Boosting of Contextual Information in ASR for Air-Traffic Call-Sign Recognition. In Proceedings Interspeech 2021. Proceedings of Interspeech. Brno: International Speech Communication Association, 2021. no. 8, p. 3301-3305. ISSN: 1990-9772.Detail
SZŐKE, I.; KESIRAJU, S.; NOVOTNÝ, O.; KOCOUR, M.; VESELÝ, K.; ČERNOCKÝ, J. Detecting English Speech in the Air Traffic Control Voice Communication. In Proceedings Interspeech 2021. Proceedings of Interspeech. Brno: International Speech Communication Association, 2021. no. 8, p. 3286-3290. ISSN: 1990-9772.Detail
Odpovědnost: Smrž Pavel, doc. RNDr., Ph.D.