studijní program

Applied Mechanics

Fakulta: FSIZkratka: D-IME-AAk. rok: 2023/2024

Typ studijního programu: doktorský

Kód studijního programu: P0715D270016

Udělovaný titul: Ph.D.

Jazyk výuky: angličtina

Akreditace: 18.2.2020 - 18.2.2030

Forma studia

Prezenční studium

Standardní doba studia

4 roky

Garant programu

Oborová rada

Cíle studia

Studijní program Inženýrská mechanika je zaměřen na přípravu vysoce kvalifikovaných odborníků s předpoklady pro vědeckou práci, zvládajících moderní výpočtové a experimentální metody ve vědní oblasti mechaniky těles, včetně specifických oblastí mechatroniky a biomechaniky. Cílem studia je poskytnout studentům potřebné teoretické znalosti a praktické zkušenosti z oblastí mechaniky odpovídajících tématu doktorského studia. K dosažení stanovených cílů a profilu studenti absolvují předměty předepsané jejich Individuálním studijním plánem, čímž je vytvořen teoretický základ pro zvládnutí tématu na nejvyšší úrovni. Praktické zvládnutí tématu pak prokazují absolvováním Státní doktorské zkoušky a vypracováním a obhájením Doktorské disertační práce.

Profil absolventa

Absolvent doktorského programu Inženýrská mechanika má vysoce specializované odborné znalosti a kompetence zejména v moderních výpočtových a experimentálních metodách ve vědní oblasti aplikované mechaniky, případně mechatroniky nebo biomechaniky, a v jejich využití ve výzkumu a vývoji v technické i medicínské oblasti. Současně má i odbornou adaptabilitu, což dává velké šance pro uplatnění jak ve výzkumu a vývoji, tak i v oblasti technických výpočtů a v manažerských pozicích. Dokladem toho jsou absolventi, působící nejen v akademické i privátní výzkumné sféře, ale i v malých výpočtových a softwarových firmách, a to i na vedoucích a manažerských pozicích konstrukčních, výpočtových a vývojových oddělení nebo obchodních zastoupení mezinárodních společností. S pronikáním počítačového modelování a podpory do oblasti medicíny lze předpokládat uplatnění biomechaniky nejen v této mezioborové sféře výzkumu a vývoje, ale i v nově vznikajících pozicích počítačové podpory v nemocnicích a na klinických pracovištích.

Charakteristika profesí

Absolvent doktorského programu Inženýrská mechanika má vysoce specializované odborné znalosti, ale současně i odbornou adaptabilitu, což dává velké šance pro uplatnění jak ve výzkumu a vývoji, tak i v oblasti technických výpočtů a manažerských pozicích. Dokladem toho jsou absolventi, působící nejen v akademické i privátní výzkumné sféře, ale i v malých výpočtových a softwarových firmách, a to i na vedoucích a manažerských pozicích konstrukčních, výpočtových a vývojových oddělení nebo obchodních zastoupení mezinárodních společností. S pronikáním počítačového modelování a podpory do oblasti medicíny lze předpokládat uplatnění biomechaniky nejen v této mezioborové sféře výzkumu a vývoje, ale i v nově vznikajících pozicích počítačové podpory v nemocnicích a na klinických pracovištích.

Podmínky splnění

Viz platné předpisy, Směrnice děkana Pravidla pro organizaci studia na fakultě (doplněk Studijního a zkušebního řádu VUT v Brně).

Vytváření studijních plánů

Pravidla a podmínky pro tvorbu studijních programů určují:
ŘÁD STUDIJNÍCH PROGRAMŮ VUT,
STANDARDY STUDIJNÍCH PROGRAMŮ VUT,
STUDIJNÍ A ZKUŠEBNÍ ŘÁD VUT,
SMĚRNICE DĚKANA Pravidla pro organizaci studia na fakultě (doplněk Studijního a zkušebního řádu VUT v Brně),
SMĚRNICE DĚKANA FSI Jednací řád oborových rad doktorských studijních programů FSI VUT v Brně.
Studium v DSP se neuskutečňuje v kreditovém systému. Klasifikační stupně jsou „prospěl“, „neprospěl“, u obhajoby disertační práce je výsledek „obhájil“, „neobhájil“.

Dostupnost pro zdravotně postižené

Na VUT jsou zohledněny potřeby rovného přístupu k vysokoškolskému vzdělávání. V přijímacím řízení ani ve studiu nedochází k přímé či nepřímé diskriminaci z žádných důvodů. Studujícím se specifickými vzdělávacími potřebami (poruchy učení, fyzický a smyslový handicap, chronická somatická onemocnění, poruchy autistického spektra, narušené komunikační schopnosti, psychická onemocnění) je poskytováno poradenství v poradenském centru VUT, které je součástí Institutu celoživotního vzdělávání VUT. Podrobně tuto problematiku řeší Směrnice rektora č. 11/2017 „Uchazeči a studenti se specifickými potřebami na VUT“. Rovněž je vytvořen funkční systém sociálních stipendií, který popisuje Směrnice rektora č. 71/2017 „Ubytovací a sociální stipendium“.

Návaznost na další typy studijních programů

Doktorský studijní program Inženýrská mechanika je pokračováním aktuálně akreditovaného navazujícího magisterského studijního programu Inženýrská mechanika a biomechanika. Zaměřuje se však obecněji na absolventy navazujících magisterských studijních programů v různých oborech mechaniky a mechatroniky, příp. matematického, fyzikálního nebo materiálového inženýrství, jejichž absolventům umožňuje pokračovat ve třetím stupni studia a dosažením vědecké hodnosti Ph.D. prokázat schopnost vědecké práce.

Vypsaná témata doktorského studijního programu

  1. Kompenzační fólie vyrobená vyřezávacím plotrem a realizace napojení přírub

    V Laboratoři přenosu tepla a proudění byl navržen koncept kompenzační fólie pro vyrovnání povrchových teplot baterie elektromobilu. Funkčnost konceptu byla ověřena numerickou simulací vedení tepla, resp. nalezením povrchové mapy tepelného odporu fólie. Cílem práce je: (i) ověřit vhodnost vyřezávacího plotru a stanovit jeho technologické limity pro výrobu kompenzační fólie, (ii) navrhnout a odzkoušet technologii aplikace fólie na baterii včetně výplňových materiálů vzniklých po perforaci fólie, (iii) proměřit povrchové teploty baterie bez fólie a s ní. Baterie může být v rámci výzkumu nahrazena vhodným topným elementem.

    Školitel: Boháček Jan, doc. Ing., Ph.D.

  2. Lattice-Boltzmannova metoda v transportních výpočtech uvnitř porézních struktur

    S porézními strukturami se můžeme setkat v některých základních fyzikálních dějích, ale i v různých průmyslových aplikacích. V Laboratoři přenosu tepla a proudění se potkáváme s následujícími případy. V hutnických a metalurgických procesech dochází k tvorbě okují na horkých površích zpracovávaných materiálů. Okuje jsou tenké vrstvy různých oxidů železa s tloušťkami v řádech jednotek až stovek mikrometrů. Okuje často obsahují značné množství různě orientovaných pórů, jež ovlivňují termo-fyzikální vlastnosti materiálu. Různé oxidy mají různý vliv na intenzitu chlazení horkých povrchů, jejíž znalost je pro mnoho procesů zásadní. Jako druhý příklad lze uvést aplikaci polymerních dutých vláken ve výměnících tepla. Vlákna mají průměr často menší než jeden milimetr a jsou relativně dlouhá. V jednom výměníku může být i několik tisíc vláken. Orientace vláken ovlivňuje výkon výměníku a tlakové ztráty, z čehož plyne požadavek na optimum. Numerické metody bývají často užity k objasňování fundamentálních jevů, ale i k optimalizaci různých procesů. Nejčastěji využívané konečno objemové a konečno prvkové komerční řešiče však narážejí na problém při generaci geometrie a posléze výpočtové sítě pro velmi komplikované porézní struktury. Lattice-Boltzmannova metoda se jeví jako vhodná alternativa, která byla již dříve s úspěchem aplikována v simulacích transportních mechanizmů uvnitř porézních struktur. Například open-source software PALABOS umožňuje práci se surovými daty přímo z tomografu, pomocí něhož byla porézní struktura převedena do voxelové matice. Cílem doktorské práce je simulace proudění a přenosu tepla uvnitř porézních struktur, jejichž topologie je možné získat z tomografu. Předpokládá se, že výpočty budou paralelní a že budou spuštěny na jednom z českých superpočítačů. Vzhledem k velikosti dat se taktéž předpokládá, že I/O operace budou také prováděny paralelně. Pro konfigurace, v nichž porézní struktura zaujímá jen část celkové výpočtové oblasti, bude odzkoušeno lokální zjemňování mřížky. Pro konfigurace s více materiálovými oblastmi funkčně propojených sdruženou okrajovou podmínkou bude navržen vhodný algoritmus tak, aby byl fyzikálně korektní a byla zachována vysoká úroveň paralelizace výpočtu.

    Školitel: Boháček Jan, doc. Ing., Ph.D.

  3. Optimalizace vodní trysky pro chlazení cylindrických povrchů

    Několikaleté studium chlazení válců ukázalo, že na trhu nejsou k dispozici vodní trysky, které by byly optimalizované na chlazení cylindrických povrchů. Cílem práce je optimalizovat vnitřní geometrii vodní trysky tak, aby bylo dosaženo efektivního rozložení vody na cylindrickém povrchu, a tak i co nejefektivnějšího chlazení. Při optimalizaci se očekává simulace jednofázového proudění uvnitř trysky a dvoufázového proudění kdy kapalina proudí ve volném prostoru (ve vzduchu). Pro navržené trysky se vyrobí prototypy, které budou následně ověřeny pomocí laboratorních experimentů. Změří se rozložení tlaku od dopadající vody na rovný povrch pomocí experimentálního zařízení, kterým je laboratoř vybavena, a tím se ověří správnost výpočtového modelu. Efektivnost chlazení cylindrického povrchu se ověří na experimentálním zařízení, kterým je laboratoř taktéž vybavena. Při optimalizaci se předpokládá také využití průmyslového tomografu pro studium vnitřní struktury vodní trysky.

    Školitel: Pohanka Michal, doc. Ing., Ph.D.

  4. Strukturální integrita aditivně vyráběných polymerních materiálů

    Zatímco aditivní výroba polymerů je stále populárnější pro designové studie, rychlé prototypování a výrobu nekritických náhradních dílů, její použití ve strukturálně zatížených součástech je stále vzácné. Jedním z důvodů může být skepse inženýrů, kvůli nedostatku znalostí ohledně očekávané životnosti a spolehlivosti, stejně jako znalostí mechanismů porušení. Předložená práce bude proto zaměřena na únavové poškození aditivně vyráběných polymerních materiálů, experimentální testování těchto materiálů a také na numerické modelování únavového poškození a šíření únavových trhlin v těchto materiálech. Tato práce bude řešena v úzké spolupráci s PCCL- Polymer Competence Center v Leobenu.

    Školitel: Hutař Pavel, prof. Ing., Ph.D.

Struktura předmětů s uvedením ECTS kreditů (studijní plán)

Studijní plán oboru není zatím pro tento rok vygenerován.