Detail předmětu

Konstitutivní vztahy materiálu pro IME

FSI-RKI-AAk. rok: 2026/2027

U studentů se vyžaduje znalost základních pojmů pružnosti a pevnosti (tenzory napětí a deformace, Hookeův zákon pro víceosou napjatost), jakož i některé základní pojmy hydromechaniky (ideální, Newtonská, nenewtonská kapalina, viskozita) a termodynamiky (entropie, stavová rovnice plynů, termodynamická rovnováha). Dále jsou nezbytné základy MKP a základní znalost práce se systémem ANSYS. Proto není předmět vhodný pro bakalářské studium. 

Jazyk výuky

angličtina

Počet kreditů

6

Vstupní znalosti

U studentů se vyžaduje znalost základních pojmů pružnosti a pevnosti (tenzory napětí a deformace, Hookeův zákon pro víceosou napjatost), jakož i některé základní pojmy hydromechaniky (ideální, Newtonská, nenewtonská kapalina, viskozita) a termodynamiky (entropie, stavová rovnice plynů, termodynamická rovnováha). Dále jsou nezbytné základy MKP a základní znalost práce se systémem ANSYS. Proto není předmět vhodný pro studenty bakalářského stupně studia.

Pravidla hodnocení a ukončení předmětu

Pro udělení zápočtu je potřebná aktivní účast na cvičeních a zpracování individuální semestrální práce. Zkouška probíhá formou písemného testu základních znalostí a obhajoby samostatné individuální semestrální práce.
Účast na cvičení je povinná. Omluvená neúčast se nahrazuje samostatným vypracováním úloh podle pokynů vyučujícího.

Učební cíle

Cílem předmětu je podat ucelený přehled konstitutivních závislostí různých typů látek, propojit přitom znalosti, získané v různých oborech (mechanika těles, hydromechanika, termodynamika) a současně si prakticky osvojit (v MKP programu ANSYS) některé konstitutivní modely vhodné pro použití u moderních konstrukčních materiálů (např. elastomery, plasty, kompozity s elastomerovou matricí, kovy nad mezí kluzu).
Studenti získají přehled o mechanických vlastnostech a chování látek a možnostech jejich matematického popisu a modelování, především v oblasti velkých deformací a časově závislého chování. Získají teoretické znalosti nutné pro jejich sofistikované využívání v konstrukci strojů a zařízení. V rámci možností používaných programů MKP se také naučí prakticky používat některé ze složitějších konstitutivních modelů (hyperelastické i neelastické, izotropní i anizotropní) v deformačně-napěťové analýze.

Základní literatura

Články v odborných časopisech
Holzapfel G.A.: Nonlinear Solid Mechanics. Wiley, 2001.
Lemaitre J., Chaboche J.-L.: Mechanics of Solid Materials. Cambridge University Press, 1994.

Doporučená literatura

Němec I. a kol. Nelineární mechanika. VUTIUM, Brno, 2018

Zařazení předmětu ve studijních plánech

  • Program N-IMB-P magisterský navazující

    specializace IME , 2 ročník, zimní semestr, povinný

Typ (způsob) výuky

 

Přednáška

26 hod., nepovinná

Vyučující / Lektor

Osnova

  1. Vymezení a přehled konstitutivních modelů v mechanice, konstitutivní modely pro jednotlivá skupenství hmoty, definice tenzorů deformace.
  2. Tenzory napětí a přetvoření při konečných deformacích. Hyperelasticita, model neo-Hooke.
  3. Mechanické zkoušky elastomerů, polynomické hyperelastické modely, predikční schopnost.
  4. Modely Ogden, Arruda-Boyce – entropická elasticita.
  5. Inkrementální modul pružnosti. Modely pěnových elastomerů. Anizotropní hyperelasticita, pseudoinvarianty.
  6. Neelastické efekty elastomerů (Mullins), podmínky plasticity.
  7. Modely plastického tečení, součinitel triaxiality napětí, Lodeho parametr.
  8. Modely plastického porušení.
  9. Slitiny s tvarovou pamětí a jejich konstitutivní modely.
  10. Úvod do teorie lineární viskoelasticity.
  11. Modely lineární viskoelasticity - odezva na statické zatěžování.
  12. Modely lineární viskoelasticity - odezva na dynamické zatěžování. Komplexní modul pružnosti.
  13. Viskohyperelasticita – polární dekompozice, model Bergstrom-Boyce.

Cvičení s počítačovou podporou

13 hod., povinná

Vyučující / Lektor

Osnova

  1. Experiment – zkoušení elastomerů

2.-3. MKP simulace zkoušek elastomerů

4.-5. Identifikace konstitutivních modelů elastomerů

6.-7. Modely plasticity

8.-9. Modely anizotropního chování elastomerů a Mullinsova efektu

10. Určování parametrů modelů z experimentálních dat

11.-12. Simulace viskoelastického chování

13. Formulace semestrálního projektu, zápočet