Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail předmětu
FEKT-BPC-UIMAk. rok: 2025/2026
Předmět je orientován na běžně používané metody z oblasti umělé inteligence: umělé neuronové sítě, shluková analýza, lineární klasifikátory, selekce příznaků, hodnocení klasifikátorů. Jsou probíraný jak teoretické (základní principy jednotlivých metod), tak praktické (aplikace při řešení úlohy klasifikace, regrese a shlukování) aspekty. Teorie je probíraná v přímé spojitosti s praktickými příklady. Veškeré výpočetní techniky jsou procvičovány s pomocí prostředí Python. Kurz připravuje posluchače k samostatnému využití daných metod pro analýzu dat ve vlastní vědecké či rutinní práci.
Jazyk výuky
Počet kreditů
Garant předmětu
Zajišťuje ústav
Vstupní znalosti
Jsou požadovány znalosti na úrovni bakalářského studia. Znalost teorie množin. Ve cvičeních předpokládáme znalost Python.
Pravidla hodnocení a ukončení předmětu
Podmínky pro úspěšné ukončení předmětu upřesňuje každoročně aktualizovaná vyhláška garanta předmětu.Bodové hodnocení předmětu:1) Týmový projekt (max. 25 bodů):• zpracování originálního řešení týmového projektu a jeho obhajoba na konci semestru (podle pokynů)- hodnoceno bude splnění zadání a kvalita prezentace výsledků všemi členy týmu- plagiátorství bude mít za následek neudělení zápočtu2) Závěrečná zkouška (max. 75 bodů):• kombinovaná forma (písemná i ústní)• celkem tři části, každá za max. 25 bodůPodmínky pro udělení zápočtu a připuštění k závěrečné zkoušce:• získání nenulového počtu bodů za týmový projekt • maximálně dvě omluvené neúčastí na cvičeníchPodmínky pro úspěšné absolvování předmětu:• získání zápočtu• získání nejméně 36 bodů ze zkoušky• získání celkem (tj. z týmového projektu a zkoušky) alespoň 50 bodů
Učební cíle
Cílem předmětu je poskytnout studentům znalosti z oblasti umělé inteligence a prezentovat jim možnosti využiti moderních nástrojů umělé inteligence při akvizici, zpracování a analýze biomedicínských dat. Posluchač získá základní znalosti a dovednosti z oblasti využití metod umělé inteligence. Bude schopen aplikovat nejčastěji používané metody v praxi za účelem zpracování a analýzy dat. Zkouškou se ověřuje, že absolvent předmětu je schopen:- vysvětlit základní pojmy z oblasti umělé inteligence,- popsat základní metody v této oblasti, diskutovat výhody a nevýhody jednotlivých metod,- vybrat a použít vhodné nástroje pro daný problém z této oblasti,- vyhodnotit kvalitu dosažených výsledků a prezentovat je ve vhodné formě,- interpretovat dosažené výsledky.
Základní literatura
Doporučená literatura
Elearning
Zařazení předmětu ve studijních plánech
Přednáška
Vyučující / Lektor
Osnova
Cvičení na počítači
1. Základy vektorizace a maticových operací2. Hierarchické shlukování dat3. Nehierarchické shlukování dat4. Redukce počtu příznaků a analýza hlavních komponent5. Návrh perceptronu (bez učení)6. Nárvh neuronové sítě (bez učení)7. Delta pravidlo8. Učení dopředné sítě I9. Učení dopředné sítě II 10. Validace modelu a hodnocení výsledků klasifikace11. Lineární klasifikátory: SVM, logistická regrese.