Detail předmětu

Multidimensional Analysis of Biomedical Data

FEKT-MPA-VMMAk. rok: 2022/2023


Předmět je orientován na běžně používané metody z oblasti analýzy vícerozměrných dat: shluková analýza, faktorová analýza, metoda hlavních komponent, t-SNE, UMAP, apod. Jsou probíraný jak teoretické (základní principy jednotlivých metod), tak praktické (aplikace při zobrazování a analýze vícerozměrných dat) aspekty. Teorie je probíraná v přímé spojitosti s praktickými příklady. Veškeré výpočetní techniky jsou procvičovány s pomocí prostředí Python. Kurz připravuje posluchače k samostatnému využití daných metod pro analýzu dat ve vlastní vědecké či rutinní práci.  

Jazyk výuky

angličtina

Počet kreditů

5

Způsob a kritéria hodnocení

Podmínky pro úspěšné ukončení předmětu upřesňuje každoročně aktualizovaná vyhláška garanta předmětu.

Bodové hodnocení předmětu:

1) Týmový projekt (max. 20 bodů):
• Zpracování originálního řešení týmového projektu a jeho obhajoba na konci semestru (podle pokynů)

Pozn.:
- Hodnoceno bude splnění zadání a kvalita prezentace výsledků všemi členy týmu
- Plagiátorství bude mít za následek neudělení zápočtu

- Povinná alespoň jedna konzultace týmu s konzultantem!


2) Závěrečná zkouška (max. 80 bodů):
• ústní forma
• celkem dvě části, každá za max. 40 bodů

Podmínky pro udělení zápočtu a připuštění k závěrečné zkoušce:
• získání nenulového počtu bodů za týmový projekt
• maximálně dvě omluvené neúčastí na cvičeních (ve výjimečných případech rozhodne o řešení garant předmětu)

Podmínky pro úspěšné absolvování předmětu:
• získání zápočtu
• získání nejméně 20 bodů z každé ze dvou částí zkoušky
• získání celkem (tj. z projektu a zkoušky) alespoň 50 bodů 

Osnovy výuky

1. Úvod do vícerozměrné analýzy biologických dat. Cíle vícerozměrné analýzy, výhody a nevýhody. Klasifikace metod.
2. Základy lineární algebry - opakování.
3. Vícerozměrné statistické rozdělení a testy.
4. Metody předzpracování dat. Typy transformace a standardizace. Problém chybějících dat.
5. Vztah mezi proměnnými ve vícerozměrném prostoru. Metriky podobnosti a vzdálenosti. Korelace, kovariance.
6. Shluková analýza biologických dat. Hierarchické a nehierarchické metody. Stanovení optimálního počtu shluků. Validace výsledků shlukování.
7. Ordinační analýzy. Přehled metod používaných v biomedicíně.
8. Analýza hlavních komponent. Princip singulárního rozkladu matice.
9. Faktorová analýza. Princip faktorové analýzy. Rotace faktorů.
10. Analýza nezávislých komponent. Extrakce popisných proměnných v biomedicínských aplikacích. Vztah mezi analýzou hlavních komponent, faktorovou analýzou a analýzou nezávislých komponent.
11. Nelineární metody redukce dimenzionality dat.
12. Příklady využití vícerozměrné analýzy biologických dat.

Základní literatura

A.C. Rencher: Methods of Multivariate Analysis, Wiley-Interscience, 2002 (CS)
J.H. McDonald: Handbook of Biological Statistics, Sparky House Publishing, 2008 (CS)

Doporučení literatura

S. Theodoridis, K. Koutroumbas: An Introduction to Pattern Recognition: A Matlab Approach, Elsevier, 2010 (CS)

Elearning

Zařazení předmětu ve studijních plánech

  • Program MPAD-BIO magisterský navazující 1 ročník, zimní semestr, povinný

Typ (způsob) výuky

 

Přednáška

26 hod., nepovinná

Vyučující / Lektor

Cvičení na počítači

26 hod., povinná

Vyučující / Lektor

Elearning