Detail publikačního výsledku

Hexagonal and Golden Quasigroups

VANŽUROVÁ, A.

Originální název

Hexagonal and Golden Quasigroups

Anglický název

Hexagonal and Golden Quasigroups

Druh

Stať ve sborníku v databázi WoS či Scopus

Originální abstrakt

Our aim is to investigate two subvarieties in the variety of idempotent medial quasigroups, namely hexagonal quasigroups and golden section quasigroups. For both classes, we present here a construction of special finite examples of low order, particularly those arising from an additive group of a finite field and a suitable left translation (with respect to multiplication). As useful tools, we use the concept of isotopism and a modified version of the Toyoda theorem.

Anglický abstrakt

Our aim is to investigate two subvarieties in the variety of idempotent medial quasigroups, namely hexagonal quasigroups and golden section quasigroups. For both classes, we present here a construction of special finite examples of low order, particularly those arising from an additive group of a finite field and a suitable left translation (with respect to multiplication). As useful tools, we use the concept of isotopism and a modified version of the Toyoda theorem.

Klíčová slova

Magma, quasigroup, medial law, hexagonal quasigroup, golden section quasigroup, finite field

Klíčová slova v angličtině

Magma, quasigroup, medial law, hexagonal quasigroup, golden section quasigroup, finite field

Autoři

VANŽUROVÁ, A.

Rok RIV

2013

Vydáno

07.02.2012

Nakladatel

Slovak University of Technology in Bratislava

Místo

Bratislava

ISBN

978-80-89313-58-7

Kniha

Aplimat 2012, 11th International Conference, February 7-9, 2012

Strany od

71

Strany do

79

Strany počet

9

BibTex

@inproceedings{BUT97634,
  author="Alena {Vanžurová}",
  title="Hexagonal and Golden Quasigroups",
  booktitle="Aplimat 2012, 11th International Conference, February 7-9, 2012",
  year="2012",
  pages="71--79",
  publisher="Slovak University of Technology in Bratislava",
  address="Bratislava",
  isbn="978-80-89313-58-7"
}