Detail publikačního výsledku

Stability and Stabilization of Linear Systems with Aftereffect

BAŠTINEC, J.; KHUSAINOV, D.; PIDDUBNA, G.

Originální název

Stability and Stabilization of Linear Systems with Aftereffect

Anglický název

Stability and Stabilization of Linear Systems with Aftereffect

Druh

Stať ve sborníku v databázi WoS či Scopus

Originální abstrakt

The representation of solution of the Cauchy problem for a linear homogeneous differential system with constant coefficients and one constant delay is obtained for the case when the matrixes of a linear part satisfy the commutativity condition. Using obtained representation the Cauchy probem for a non-uniform system is solved and the control problem is considered.

Anglický abstrakt

The representation of solution of the Cauchy problem for a linear homogeneous differential system with constant coefficients and one constant delay is obtained for the case when the matrixes of a linear part satisfy the commutativity condition. Using obtained representation the Cauchy probem for a non-uniform system is solved and the control problem is considered.

Klíčová slova

Cauchy problem, linear homogeneous differential system with constant coefficients and one constant delay, commutativity condition, non-uniform system, control problem

Klíčová slova v angličtině

Cauchy problem, linear homogeneous differential system with constant coefficients and one constant delay, commutativity condition, non-uniform system, control problem

Autoři

BAŠTINEC, J.; KHUSAINOV, D.; PIDDUBNA, G.

Rok RIV

2017

Vydáno

05.06.2012

Nakladatel

MU

Místo

Moskva

ISBN

978-5-91450-106-5

Kniha

XIV International Conference Stability and Oscillations of Nonlinear Control Systems

Strany od

332

Strany do

334

Strany počet

3

BibTex

@inproceedings{BUT92533,
  author="Jaromír {Baštinec} and Denys {Khusainov} and Ganna Konstantinivna {Piddubna}",
  title="Stability and Stabilization of Linear Systems with Aftereffect",
  booktitle="XIV International Conference Stability and Oscillations of Nonlinear Control Systems",
  year="2012",
  number="1.",
  pages="332--334",
  publisher="MU",
  address="Moskva",
  isbn="978-5-91450-106-5"
}