Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
POSPÍCHAL, P.; SCHWARZ, J.; JAROŠ, J.
Originální název
Acceleration of grammatical evolution using graphics processing units: computational intelligence on consumer games and graphics hardware
Anglický název
Druh
Stať ve sborníku v databázi WoS či Scopus
Originální abstrakt
Several papers show that symbolic regression is suitable for data analysis and prediction in financial markets. Grammatical Evolution (GE), a grammar-based form of Genetic Programming (GP), has been successfully applied in solving various tasks including symbolic regression. However, often the computational effort to calculate the fitness of a solution in GP can limit the area of possible application and/or the extent of experimentation undertaken. This paper deals with utilizing mainstream graphics processing units (GPU) for acceleration of GE solving symbolic regression. GPU optimization details are discussed and the NVCC compiler is analyzed. We design an effective mapping of the algorithm to the CUDA framework, and in so doing must tackle constraints of the GPU approach, such as the PCI-express bottleneck and main memory transactions.
Anglický abstrakt
Klíčová slova
CUDA, grammatical evolution, graphics chips, GPU, GPGPU, speedup, symbolic regression
Klíčová slova v angličtině
Autoři
Rok RIV
2012
Vydáno
26.08.2011
Nakladatel
Association for Computing Machinery
Místo
New York
ISBN
978-1-4503-0690-4
Kniha
Genetic and Evolutionary Computation Conference, GECCO'11 - Companion Publication
Strany od
431
Strany do
438
Strany počet
8
BibTex
@inproceedings{BUT76469, author="Petr {Pospíchal} and Josef {Schwarz} and Jiří {Jaroš}", title="Acceleration of grammatical evolution using graphics processing units: computational intelligence on consumer games and graphics hardware", booktitle="Genetic and Evolutionary Computation Conference, GECCO'11 - Companion Publication", year="2011", pages="431--438", publisher="Association for Computing Machinery", address="New York", doi="10.1145/2001858.2002030", isbn="978-1-4503-0690-4" }