Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
BURGET, R.; BURGETOVÁ, I.
Originální název
Automatic annotation of online articles based on visual feature classification
Anglický název
Druh
Článek Scopus
Originální abstrakt
When applying the traditional data mining methods to World Wide Web documents, the typical problem is that a normal web page contains a variety of information of different kinds in addition to its main content. This additional information such as navigation, advertisement or copyright notices negatively influences the results of the data mining methods as for example the content classification. In this paper, we present a method of interesting area detection in a web page. This method is inspired by an assumed human reader approach to this task. First, basic visual blocks are detected in the page and subsequently, the purpose of these blocks is guessed based on their visual appearance. We describe a page segmentation method used for the visual block detection, we propose a way of the block classification based on the visual features and finally, we provide an experimental evaluation of the method on real-world data.
Anglický abstrakt
Klíčová slova
automatic annotation, online articles, page segmentation; document preprocessing, visual features, visual analysis, data mining, classification
Klíčová slova v angličtině
Autoři
Rok RIV
2012
Vydáno
01.07.2011
ISSN
1751-5858
Periodikum
International Journal of Intelligent Information and Database System
Svazek
5
Číslo
4
Stát
Švýcarská konfederace
Strany od
338
Strany do
360
Strany počet
23
URL
https://www.fit.vut.cz/research/publication/9692/
Plný text v Digitální knihovně
http://hdl.handle.net/
BibTex
@article{BUT76405, author="Radek {Burget} and Ivana {Burgetová}", title="Automatic annotation of online articles based on visual feature classification", journal="International Journal of Intelligent Information and Database System", year="2011", volume="5", number="4", pages="338--360", doi="10.1504/IJIIDS.2011.041322", issn="1751-5858", url="https://www.fit.vut.cz/research/publication/9692/" }
Dokumenty
IJIIDS050402_BURGET