Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
KOVÁR, M.
Originální název
At most 4 topologies can arise from iterating the de Groot dual
Anglický název
Druh
Článek recenzovaný mimo WoS a Scopus
Originální abstrakt
Problem 540 of J. D. Lawson and M. Mislove in Open Problems in Topology asks whether the process of taking duals terminate after finitely many steps with topologies that are duals of each other. The problem for $T_1$ spaces was already solved by G. E. Strecker in 1966. For certain topologies on hyperspaces (which are not necessarily $T_1$), the main question was in the positive answered by Bruce S. Burdick and his solution was presented on The First Turkish International Conference on Topology in Istanbul in 2000. In this paper we show that for any topological space $(X,\tau)$ it follows $\tau^{dd}=\tau^{dddd}$. Further, we classify topological spaces with respect to the number of generated topologies by the process of taking duals.
Anglický abstrakt
Klíčová slova
saturated set, dual topology, compactness operator
Klíčová slova v angličtině
Autoři
Rok RIV
2011
Vydáno
01.05.2003
ISSN
0166-8641
Periodikum
TOPOLOGY AND ITS APPLICATIONS
Svazek
2003
Číslo
130
Stát
Nizozemsko
Strany od
175
Strany do
182
Strany počet
8
BibTex
@article{BUT41534, author="Martin {Kovár}", title="At most 4 topologies can arise from iterating the de Groot dual", journal="TOPOLOGY AND ITS APPLICATIONS", year="2003", volume="2003", number="130", pages="175--182", issn="0166-8641" }