Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
NOVÁK, L.; LU, Q.; SHARMA, H.; ROY SARKAR, D.; GOSWAMI, S.; SHIELDS, M.
Originální název
Physics-Informed Polynomial Chaos Expansions: Recent Developments and Comparisons
Anglický název
Druh
Stať ve sborníku mimo WoS a Scopus
Originální abstrakt
This work presents recent developments in a constrained polynomial chaos expansion as a physics-informed machine learning technique. Specifically, an optimized numerical solver for straightforward updating of Lagrange multipliers and an improved statistical sampling method are compared to the original algorithm for estimating deterministic coefficients. Both techniques are applied to solve a heat equation with Neumann boundary conditions. A second study presents a preliminary numerical comparison of the constrained polynomial chaos expansion and physics-informed deep operator networks with respect to computational cost and achieved accuracy.
Anglický abstrakt
Klíčová slova
Scientific machine learning, Uncertainty quantification, Physics-informed Polynomial chaos expansion, Physics-informed deep operator networks , Statistical sampling
Klíčová slova v angličtině
Autoři
Vydáno
17.05.2025
Nakladatel
CIMNE
Kniha
14th International Conference on Structural Safety and Reliability
Strany od
1
Strany do
9
Strany počet
URL
https://www.scipedia.com/public/Novak_et_al_2025a
BibTex
@inproceedings{BUT200567, author="Lukáš {Novák} and Qitian {Lu} and Himanshu {Sharma} and {} and Michael {Shields} and {}", title="Physics-Informed Polynomial Chaos Expansions: Recent Developments and Comparisons", booktitle="14th International Conference on Structural Safety and Reliability", year="2025", pages="9", publisher="CIMNE", doi="10.23967/icossar.2025.076", url="https://www.scipedia.com/public/Novak_et_al_2025a" }