Detail publikačního výsledku

MPULSE CHARACTERISTICS OF THE FRACTIONAL SEQUENTIAL ORDER CONTROL SYSTEM

ŠMARDA, Z.; TŮMA, M.

Originální název

MPULSE CHARACTERISTICS OF THE FRACTIONAL SEQUENTIAL ORDER CONTROL SYSTEM

Anglický název

MPULSE CHARACTERISTICS OF THE FRACTIONAL SEQUENTIAL ORDER CONTROL SYSTEM

Druh

Stať ve sborníku mimo WoS a Scopus

Originální abstrakt

In the paper, we present a numerical method for solving fractional sequential control systems based on the fractional Laplace transform with special forms of Mittag-Leffler functions. We consider the fractional derivative in the Caputo sense. Using the proposed method we get impulse characteristics for fractional transfer functions. Numerical examples are included to demonstrate the applicability of this technique.

Anglický abstrakt

In the paper, we present a numerical method for solving fractional sequential control systems based on the fractional Laplace transform with special forms of Mittag-Leffler functions. We consider the fractional derivative in the Caputo sense. Using the proposed method we get impulse characteristics for fractional transfer functions. Numerical examples are included to demonstrate the applicability of this technique.

Klíčová slova

Fractional sequential differential equations, Caputo derivative, Mittag-Leffler functions, fractional Laplace transform, Impulse characteristics.

Klíčová slova v angličtině

Fractional sequential differential equations, Caputo derivative, Mittag-Leffler functions, fractional Laplace transform, Impulse characteristics.

Autoři

ŠMARDA, Z.; TŮMA, M.

Vydáno

15.12.2025

ISBN

978-80-7582-642-8

Kniha

Mathematics, Information Technologies and Applied Sciences 2025

Strany od

91

Strany do

100

Strany počet

10

URL

BibTex

@inproceedings{BUT200465,
  author="Zdeněk {Šmarda} and Martin {Tůma}",
  title="MPULSE CHARACTERISTICS OF THE FRACTIONAL SEQUENTIAL
ORDER CONTROL SYSTEM",
  booktitle="Mathematics, Information Technologies and Applied Sciences 2025",
  year="2025",
  pages="91--100",
  isbn="978-80-7582-642-8",
  url="https://mitav.unob.cz/data/235_FVT_ISBN_642-8_e-kniha.pdf"
}