Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
SCHWARZEROVÁ, J.; VOLNA, E.; WALDHERR, S.; PROVAZNÍK, V.; WECKWERTH, W.
Originální název
Metabolomic Predictions via SOM: A Cold-Stress Case Study in Arabidopsis thaliana
Anglický název
Druh
Stať ve sborníku v databázi WoS či Scopus
Originální abstrakt
Understanding how Arabidopsis thaliana responds to cold stress at the metabolomic level is essential for uncovering plant resilience mechanisms. In this study, we applied Self-Organizing Maps (SOMs) for metabolomic prediction and pattern recognition. The dataset includes metabolite concentration values and realistic growth rates for 241 A. thaliana ecotypes, with each ecotype analyzed for 37 primary metabolites. These metabolites, particularly sugars, show significant concentration shifts in response to stress, making them ideal for detecting concept drift and understanding its impact on plant growth under cold stress conditions. The study utilized two distinct datasets: one from plants grown under standard growth conditions at 16 ℃, and the other from plants exposed to cold stress at 6 ℃. By applying SOMs to these data, we aimed to uncover patterns and predictive insights into the metabolomic changes induced by cold stress, providing new perspectives on the adaptive mechanisms of A. thaliana.
Anglický abstrakt
Klíčová slova
Arabidopsis thaliana | Cold Stress | Machine Learning | Metabolomics | Self-Organizing Maps
Klíčová slova v angličtině
Autoři
Vydáno
16.11.2025
Nakladatel
Springer Science and Business Media Deutschland GmbH
ISBN
9783032084514
Kniha
Lecture Notes in Computer Science
Periodikum
Stát
Švýcarská konfederace
Strany od
322
Strany do
333
Strany počet
12
BibTex
@inproceedings{BUT200052, author="Jana {Schwarzerová} and {} and {} and Valentýna {Provazník} and {}", title="Metabolomic Predictions via SOM: A Cold-Stress Case Study in Arabidopsis thaliana", booktitle="Lecture Notes in Computer Science", year="2025", journal="Lecture Notes in Computer Science", pages="322--333", publisher="Springer Science and Business Media Deutschland GmbH", doi="10.1007/978-3-032-08452-1\{_}26", isbn="9783032084514" }