Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
SCHWARZEROVÁ, J.; STEFEK, L.; SIMPACH, J.; PAVLISKA, L.; WALEK, B.; EVIN, L.; PROVAZNÍK, V.; WECKWERTH, W.; REGULI, S.
Originální název
CyberKnife and Data Mining: Exploring Opportunities for Clinical Advancements
Anglický název
Druh
Stať ve sborníku v databázi WoS či Scopus
Originální abstrakt
The integration of data mining with precision medicine is transforming healthcare by uncovering novel clinical insights and enhancing treatment accuracy in patients undergoing CyberKnife therapy. This pilot study explores the potential of data mining to improve patient outcomes by identifying hidden patterns and relationships within clinical data. We apply various data mining techniques, including classification, regression, clustering, and association rule mining, to analyze patient records, diagnostic information, and treatment outcomes. Leveraging advanced algorithms, we aim to refine disease prediction, optimize treatment plans, and support personalized medicine. Preliminary results indicate promising applications in predicting treatment success, identifying risk factors, and streamlining clinical decision-making. This research contributes to bridging the gap between data mining analytics and precision healthcare, opening new possibilities for advancing radiotherapy practices.
Anglický abstrakt
Klíčová slova
Clinical data | Cyberknife | Data mining | Machine Learning
Klíčová slova v angličtině
Autoři
Vydáno
16.11.2025
Nakladatel
Springer Science and Business Media Deutschland GmbH
ISBN
9783032084514
Kniha
Lecture Notes in Computer Science
Periodikum
Stát
Švýcarská konfederace
Strany od
219
Strany do
229
Strany počet
11
BibTex
@inproceedings{BUT200049, author="Jana {Schwarzerová} and {} and {} and {} and {} and {} and Valentýna {Provazník} and {} and {}", title="CyberKnife and Data Mining: Exploring Opportunities for Clinical Advancements", booktitle="Lecture Notes in Computer Science", year="2025", journal="Lecture Notes in Computer Science", pages="219--229", publisher="Springer Science and Business Media Deutschland GmbH", doi="10.1007/978-3-032-08452-1\{_}18", isbn="9783032084514" }