Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
ŘEHÁK, P.; FUJIMOTO, K.
Originální název
Regularly varying solutions of subhomogeneous differential equations with p(t)-Laplacian
Anglický název
Druh
Článek WoS
Originální abstrakt
This paper investigates the asymptotic behavior of increasing solutions to subhomogeneous differential equations involving the p(t)-Laplacian operator. Specifically, we consider the quasilinear equation (a(t)|y'|(p(t)) sgny')' = b(t)|y|(q(t)) L-G(|y|)sgny where p(t) and q(t) are variable exponents and L-G is a slowly varying perturbation. Our focus is on regularly varying solutions under the subhomogeneity condition p(t) > q(t) for large t. We show that all increasing solutions are regularly varying, derive asymptotic formulas for these solutions, and demonstrate their examples. This work contributes to the understanding of nonoscillatory solutions and shows how regular variation can be useful in studying differential equations involving variable exponents.
Anglický abstrakt
Klíčová slova
Asymptotic behavior, Nonoscillatory solutions, Regularly varying function, Variable exponent, p(t)-Laplacian, Half-linear differential equations
Klíčová slova v angličtině
Autoři
Vydáno
08.11.2025
Periodikum
Nonlinear differential equations and applications
Svazek
1
Číslo
33
Stát
Švýcarská konfederace
Strany od
Strany do
23
Strany počet
URL
https://link.springer.com/article/10.1007/s00030-025-01164-1
BibTex
@article{BUT199535, author="Pavel {Řehák} and {}", title="Regularly varying solutions of subhomogeneous differential equations with p(t)-Laplacian", journal="Nonlinear differential equations and applications", year="2025", volume="1", number="33", pages="1--23", doi="10.1007/s00030-025-01164-1", issn="1021-9722", url="https://link.springer.com/article/10.1007/s00030-025-01164-1" }