Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
SKALSKÝ, O.; DOKOUPIL, J.
Originální název
Bayesian Knowledge Transfer for a Kalman Fixed-Lag Interval Smoother
Anglický název
Druh
Článek WoS
Originální abstrakt
A Bayesian knowledge transfer mechanism that leverages external information to improve the performance of the Kalman fixed-lag interval smoother (FLIS) is proposed. Exact knowledge of the external observation model is assumed to be missing, which hinders the direct application of Bayes' rule in traditional transfer learning approaches. This limitation is overcome by the fully probabilistic design, conditioning the targeted task of state estimation on external information. To mitigate the negative impact of inaccurate external data while leveraging precise information, a latent variable is introduced. Favorably, in contrast to a filter, FLIS retrospectively refines past decisions up to a fixed time horizon, reducing the accumulation of estimation error and consequently improving the performance of state inference. Simulations indicate that the proposed algorithm better exploits precise external knowledge compared to a similar technique and achieves comparable results when the information is imprecise.
Anglický abstrakt
Klíčová slova
Bayesian knowledge transfer, fixed-lag interval smoothing, state estimation, fully probabilistic design
Klíčová slova v angličtině
Autoři
Vydáno
16.06.2025
Nakladatel
IEEE
Periodikum
IEEE Control Systems Letters
Svazek
9
Číslo
1
Stát
Spojené státy americké
Strany od
2037
Strany do
2042
Strany počet
6
URL
https://ieeexplore.ieee.org/document/11036741
Plný text v Digitální knihovně
http://hdl.handle.net/11012/256248
BibTex
@article{BUT199372, author="Ondřej {Skalský} and Jakub {Dokoupil}", title="Bayesian Knowledge Transfer for a Kalman Fixed-Lag Interval Smoother", journal="IEEE Control Systems Letters", year="2025", volume="9", number="1", pages="2037--2042", doi="10.1109/LCSYS.2025.3580047", url="https://ieeexplore.ieee.org/document/11036741" }