Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
ŠPLÍCHAL, B.; LEHKÝ, D.
Originální název
Identifying structural damage using a convolutional neural network from time-domain dynamic response data
Anglický název
Druh
Stať ve sborníku v databázi WoS či Scopus
Originální abstrakt
Ageing transport infrastructure brings increased economic burden and uncertainties regarding the reliability, durability and safe use of structures. Early damage detection to locate incipient damage provides an opportunity for early structural maintenance and can guarantee structural reliability and continuing serviceability. Structural Health Monitoring (SHM) is essential for assessing structural conditions, using sensor data to detect potential issues. SHM complements predictive maintenance in modern industry, reducing downtime and costs by addressing problems before they escalate. Machine learning techniques are increasingly employed to analyse vibration data, extracting valuable insights often based on prior structural knowledge, further enhancing the accuracy and effectiveness of SHM efforts. This paper describes a method for identifying the location and extent of structural damage using a convolutional neural network (CNN). The time-domain dynamic response of the structure is provided as input data to CNN. The method is used to identify damage to an existing riveted truss bridge. The effect of damage rate and location on the identification speed and solution accuracy is investigated and discussed. The method is also compared to an artificial neural network-based inverse analysis method, where the input data is the dynamic response of the structure in the frequency domain.
Anglický abstrakt
Klíčová slova
Damage identification, Convolutional neural network, Artificial neural network, FE model updating, Structural health monitoring
Klíčová slova v angličtině
Autoři
Vydáno
07.08.2025
Nakladatel
CRC Press
Místo
London
ISBN
9781003677895
Kniha
Engineering Materials, Structures, Systems and Methods for a More Sustainable Future
Strany od
1403
Strany do
1408
Strany počet
6
URL
https://www.taylorfrancis.com/chapters/edit/10.1201/9781003677895-236/identifying-structural-damage-using-convolutional-neural-network-time-domain-dynamic-response-data-šplíchal-lehký?context=ubx&refId=cb1c3bec-e03f-4a50-8413-573212493c95
BibTex
@inproceedings{BUT199036, author="{} and Bohumil {Šplíchal} and {} and David {Lehký}", title="Identifying structural damage using a convolutional neural network from time-domain dynamic response data", booktitle="Engineering Materials, Structures, Systems and Methods for a More Sustainable Future", year="2025", pages="1403--1408", publisher="CRC Press", address="London", doi="10.1201/9781003677895-236", isbn="9781003677895", url="https://www.taylorfrancis.com/chapters/edit/10.1201/9781003677895-236/identifying-structural-damage-using-convolutional-neural-network-time-domain-dynamic-response-data-šplíchal-lehký?context=ubx&refId=cb1c3bec-e03f-4a50-8413-573212493c95" }