Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
RAE, M.; OTTAVIANI, M.; CAPKOVÁ, D.; KAZDA, T.; SANTA MARIA, L.; RYAN, K.; PASSERINI, S.; SINGH, M.
Originální název
Comprehensive machine learning approaches for modelling the state of charge of lithium-ion batteries
Anglický název
Druh
Článek WoS
Originální abstrakt
The advancement of lithium-ion batteries (LIBs) is vital for achieving net-zero emissions because it enables renewable energy integration, supports electric vehicle (EV) adoption, and promotes cost-effective and sustainable solutions. The growing demand for EVs and portable electronics has amplified the need for reliable battery management systems to ensure safety and performance. Machine learning (ML) methods for modelling the state of charge (SOC) in batteries are gaining traction owing to their adaptability to diverse datasets and lower computational demands. However, the challenge lies in selecting the most suitable ML architecture for a specific application. This study evaluates three ML approaches for SOC modelling in LIBs: multilayer perceptron (MLP), long short-term memory (LSTM), and nonlinear autoregressive with exogenous input (NARX) neural networks. The models were tested using an experimental dataset with multiple input variables, including electrochemical impedance spectroscopy data, voltage, and capacity from commercial LIB cells. The results show that MLP and LSTM perform effectively with smaller training datasets (14 samples), whereas the NARX model requires more extensive data (34 out of 67 samples) for accuracy. Additionally, the NARX model showed greater sensitivity to learning rate adjustments and hidden layer configurations, whereas MLP and LSTM maintained robust performance across varying parameters.
Anglický abstrakt
Klíčová slova
Machine learning, Deep artificial neural network, Li-ion batteries, State of charge, Mathematical modelling, Coarse dataset
Klíčová slova v angličtině
Autoři
Vydáno
01.08.2025
Nakladatel
Elsevier
ISSN
0378-7753
Periodikum
JOURNAL OF POWER SOURCES
Číslo
646
Stát
Nizozemsko
Strany počet
15
URL
https://www.sciencedirect.com/science/article/pii/S0378775325007657?via%3Dihub
BibTex
@article{BUT198533, author="Mitchell {Rae} and Michela {Ottaviani} and Dominika {Capková} and Tomáš {Kazda} and Luigi Jacopo {Santa Maria} and Kevin M. {Ryan} and Stefano {Passerini} and Mahakpreet {Singh}", title="Comprehensive machine learning approaches for modelling the state of charge of lithium-ion batteries", journal="JOURNAL OF POWER SOURCES", year="2025", number="646", pages="15", doi="10.1016/j.jpowsour.2025.236929", issn="0378-7753", url="https://www.sciencedirect.com/science/article/pii/S0378775325007657?via%3Dihub" }