Detail publikačního výsledku

Atomic layer deposited Ir nanostructures on titania nanotube layers for efficient alkaline hydrogen evolution reaction

Bawab, B.; Rodriguez-Pereira, J.; Michalicka, J.; Pouzar, M.; Hromadko, L.; Zazpe, R.; Macak, JM.

Originální název

Atomic layer deposited Ir nanostructures on titania nanotube layers for efficient alkaline hydrogen evolution reaction

Anglický název

Atomic layer deposited Ir nanostructures on titania nanotube layers for efficient alkaline hydrogen evolution reaction

Druh

Článek WoS

Originální abstrakt

Herein, we present the deposition and use of Iridium (Ir) electrocatalysts by Atomic Layer Deposition (ALD) on TiO2 nanotube layers (TNTs) towards Hydrogen Evolution Reaction (HER) in alkaline media. We demonstrate a precise control over Ir ALD deposition by varying the number of ALD cycles from 25 to 300, obtaining singleatoms (SAs), clusters and nanoparticles (NPs). TNTs decorated with Ir using 200 ALD cycles exhibited superior HER performance with a low overpotential value of 34 mV, minimal charge transfer resistance of 0.2 Omega and a low Tafel slope of 37 mV dec-1. Long-term stability tests revealed gradual activity degradation due to a partial oxidation of Ir. Notably, while the 200 cycles coating showed the lowest overpotential, the 150 cycles coating demonstrated the highest turnover frequency (TOF) of 1.08 s-1, indicating that optimal use of the available active sites for improved HER performance. This results from the balance between the Ir content and the available active sites, rather than solely relying on electrochemically active surface area (ECSA) or overpotential values. This work provides insights into the complex relationship between Ir nanostructure, oxidation states and catalytic efficiency, contributing to the development of more effective HER catalysts.

Anglický abstrakt

Herein, we present the deposition and use of Iridium (Ir) electrocatalysts by Atomic Layer Deposition (ALD) on TiO2 nanotube layers (TNTs) towards Hydrogen Evolution Reaction (HER) in alkaline media. We demonstrate a precise control over Ir ALD deposition by varying the number of ALD cycles from 25 to 300, obtaining singleatoms (SAs), clusters and nanoparticles (NPs). TNTs decorated with Ir using 200 ALD cycles exhibited superior HER performance with a low overpotential value of 34 mV, minimal charge transfer resistance of 0.2 Omega and a low Tafel slope of 37 mV dec-1. Long-term stability tests revealed gradual activity degradation due to a partial oxidation of Ir. Notably, while the 200 cycles coating showed the lowest overpotential, the 150 cycles coating demonstrated the highest turnover frequency (TOF) of 1.08 s-1, indicating that optimal use of the available active sites for improved HER performance. This results from the balance between the Ir content and the available active sites, rather than solely relying on electrochemically active surface area (ECSA) or overpotential values. This work provides insights into the complex relationship between Ir nanostructure, oxidation states and catalytic efficiency, contributing to the development of more effective HER catalysts.

Klíčová slova

Atomic layer deposition; Iridium; Nanostructures; TiO2 nanotube; Alkaline hydrogen evolution reaction

Klíčová slova v angličtině

Atomic layer deposition; Iridium; Nanostructures; TiO2 nanotube; Alkaline hydrogen evolution reaction

Autoři

Bawab, B.; Rodriguez-Pereira, J.; Michalicka, J.; Pouzar, M.; Hromadko, L.; Zazpe, R.; Macak, JM.

Vydáno

20.09.2025

Nakladatel

PERGAMON-ELSEVIER SCIENCE LTD

Místo

OXFORD

ISSN

1873-3859

Periodikum

ELECTROCHIMICA ACTA

Svazek

535

Číslo

146607

Stát

Spojené království Velké Británie a Severního Irska

Strany počet

9

URL

BibTex

@article{BUT198250,
  author="Bilal {Bawab} and Miloslav {Pouzar} and Jan {Macák} and Jhonatan {Rodriguez Pereira} and Jan {Michalička} and Raúl {Zazpe Mendioroz} and Luděk {Hromádko}",
  title="Atomic layer deposited Ir nanostructures on titania nanotube layers for efficient alkaline hydrogen evolution reaction",
  journal="ELECTROCHIMICA ACTA",
  year="2025",
  volume="535",
  number="146607",
  pages="9",
  doi="10.1016/j.electacta.2025.146607",
  issn="0013-4686",
  url="https://www.sciencedirect.com/science/article/pii/S0013468625009685?via%3Dihub"
}