Detail publikačního výsledku

How to Achieve High Spatial Resolution in Organic Optobioelectronic Devices?

FABBRI, L.; MIGLIACCIO, L.; ŠIRVINSKYTĖ, A.; RIZZI, G.; BONDI, L.; TAMAROZZI, C.; WEBER, S.; FRABONI, B.; GLOWACKI, E.; CRAMER, T.

Originální název

How to Achieve High Spatial Resolution in Organic Optobioelectronic Devices?

Anglický název

How to Achieve High Spatial Resolution in Organic Optobioelectronic Devices?

Druh

Článek WoS

Originální abstrakt

Light activated local stimulation and sensing of biological cells hold great promise for minimally invasive bioelectronic interfaces. Organic semiconductors are particularly appealing for these applications due to their optoelectronic properties and biocompatibility. This study examines the material properties necessary to localize the optical excitation and achieve optoelectronic transduction with high spatial resolution. Using photovoltage and photocurrent microscopy, we investigate spatial broadening of local optical excitation in Phthalocyanine/3,4,9,10-Perylenetetracarboxylic diimide (H2PC/PTCDI) planar heterojunctions. Our measurements reveal that resolution losses are tied to the effective diffusion length of charge carriers at the heterojunction. For the H2PC/PTCDI heterojunction, the diffusion length is determined to be lambda d = 1.5 +/- 0.1 mu m, attributed to reduced carrier mobility. Covering the heterojunction with poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) improves the charge generation performance but increases the carrier diffusion length to lambda d = 7.0 +/- 0.3 mu m due to longer lifetime and higher carrier mobility. These findings elucidate the physical mechanisms underlying transduction and provide design principles for organic semiconductor devices aimed at achieving high efficiency and high spatial resolution for wireless and optically activated bioelectronics.

Anglický abstrakt

Light activated local stimulation and sensing of biological cells hold great promise for minimally invasive bioelectronic interfaces. Organic semiconductors are particularly appealing for these applications due to their optoelectronic properties and biocompatibility. This study examines the material properties necessary to localize the optical excitation and achieve optoelectronic transduction with high spatial resolution. Using photovoltage and photocurrent microscopy, we investigate spatial broadening of local optical excitation in Phthalocyanine/3,4,9,10-Perylenetetracarboxylic diimide (H2PC/PTCDI) planar heterojunctions. Our measurements reveal that resolution losses are tied to the effective diffusion length of charge carriers at the heterojunction. For the H2PC/PTCDI heterojunction, the diffusion length is determined to be lambda d = 1.5 +/- 0.1 mu m, attributed to reduced carrier mobility. Covering the heterojunction with poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) improves the charge generation performance but increases the carrier diffusion length to lambda d = 7.0 +/- 0.3 mu m due to longer lifetime and higher carrier mobility. These findings elucidate the physical mechanisms underlying transduction and provide design principles for organic semiconductor devices aimed at achieving high efficiency and high spatial resolution for wireless and optically activated bioelectronics.

Klíčová slova

optobioelectronics; organic heterojunctions; photocapacitors; photocurrent microscopy; photovoltage; spatial resolution

Klíčová slova v angličtině

optobioelectronics; organic heterojunctions; photocapacitors; photocurrent microscopy; photovoltage; spatial resolution

Autoři

FABBRI, L.; MIGLIACCIO, L.; ŠIRVINSKYTĖ, A.; RIZZI, G.; BONDI, L.; TAMAROZZI, C.; WEBER, S.; FRABONI, B.; GLOWACKI, E.; CRAMER, T.

Vydáno

01.05.2025

Nakladatel

WILEY

Místo

HOBOKEN

ISSN

2196-7350

Periodikum

Advanced Materials Interfaces

Svazek

12

Číslo

9

Stát

Spolková republika Německo

Strany od

1

Strany do

9

Strany počet

9

URL

Plný text v Digitální knihovně

BibTex

@article{BUT197816,
  author="Luca {Fabbri} and Ludovico {Migliaccio} and Aleksandra {Širvinskytė} and Giacomo {Rizzi} and Luca {Bondi} and Cristiano {Tamarozzi} and Stefan A.L. {Weber} and Beatrice {Fraboni} and Eric Daniel {Glowacki} and Tobias {Cramer}",
  title="How to Achieve High Spatial Resolution in Organic Optobioelectronic Devices?",
  journal="Advanced Materials Interfaces",
  year="2025",
  volume="12",
  number="9",
  pages="1--9",
  doi="10.1002/admi.202400822",
  issn="2196-7350",
  url="https://advanced.onlinelibrary.wiley.com/doi/10.1002/admi.202400822"
}

Dokumenty