Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
MIKLÁNEK, Š.; SCHIMMEL, J.
Originální název
Fast Temporal Convolutions for Real-Time Audio Signal Processing
Anglický název
Druh
Stať ve sborníku v databázi WoS či Scopus
Originální abstrakt
This paper introduces the possibilities of optimizing neural network convolutional layers for modeling nonlinear audio systems and effects. Enhanced methods for real-time dilated convolutions are presented to achieve faster signal processing times than in previous work. Due to the improved implementation of convolutional layers, a significant decrease in computational requirements was observed and validated on different configurations of single layers with dilated convolutions and WaveNet-style feedforward neural network models. In most cases, equivalent signal processing times were achieved to those using recurrent neural networks with Long Short-Term Memory units and Gated Recurrent Units, which are considered state-of-the-art in the field of black-box virtual analog modeling
Anglický abstrakt
Klíčová slova
convolutional neural networks; deep learning; virtual analog modelling; nonlinear systems
Klíčová slova v angličtině
Autoři
Rok RIV
2023
Vydáno
02.09.2022
Nakladatel
DAFx
Místo
Vídeň
ISBN
978-3-200-08599-2
Kniha
Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22)
ISSN
2413-6689
Periodikum
Proceedings of the International Conference on Digital Audio Effects (DAFx)
Stát
Rakouská republika
Strany od
115
Strany do
121
Strany počet
7
Plný text v Digitální knihovně
http://hdl.handle.net/
BibTex
@inproceedings{BUT178795, author="Štěpán {Miklánek} and Jiří {Schimmel}", title="Fast Temporal Convolutions for Real-Time Audio Signal Processing", booktitle="Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22)", year="2022", journal="Proceedings of the International Conference on Digital Audio Effects (DAFx)", pages="115--121", publisher="DAFx", address="Vídeň", isbn="978-3-200-08599-2", issn="2413-6689" }