Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
DIBLÍK, J.
Originální název
Bounded solutions to systems of fractional discrete equations
Anglický název
Druh
Článek WoS
Originální abstrakt
The article is concerned with systems of fractional discrete equations Delta(alpha)x(n + 1) = F-n(n, x(n), x(n - 1), ..., x(n(0))), n = n(0), n(0) + 1, ..., where n(0) is an element of Z , n is an independent variable, Delta(alpha) is an alpha-order fractional difference, alpha is an element of R, F-n : {n} x Rn-n0+1 -> R-s, S >= 1 is a fixed integer, and x : {n(0), n(0) + 1, ...} -> R-s is a dependent (unknown) variable. A retract principle is used to prove the existence of solutions with graphs remaining in a given domain for every n >= n(0), which then serves as a basis for further proving the existence of bounded solutions to a linear nonhomogeneous system of discrete equations Delta(alpha)x(n + 1) = A(n)x(n) + delta(n), n = n(0), n(0) + 1, ..., where A(n) is a square matrix and delta(n) is a vector function. Illustrative examples accompany the statements derived, possible generalizations are discussed, and open problems for future research are formulated as well.
Anglický abstrakt
Klíčová slova
Fractional discrete difference; asymptotic behavior; system of fractional discrete equations; estimates of solutions
Klíčová slova v angličtině
Autoři
Rok RIV
2023
Vydáno
19.07.2022
Nakladatel
De Gruyter
ISSN
2191-950X
Periodikum
Advances in Nonlinear Analysis
Svazek
11
Číslo
1
Stát
Spolková republika Německo
Strany od
1614
Strany do
1630
Strany počet
17
URL
https://www.degruyter.com/document/doi/10.1515/anona-2022-0260/html
Plný text v Digitální knihovně
http://hdl.handle.net/11012/208201
BibTex
@article{BUT178596, author="Josef {Diblík}", title="Bounded solutions to systems of fractional discrete equations", journal="Advances in Nonlinear Analysis", year="2022", volume="11", number="1", pages="1614--1630", doi="10.1515/anona-2022-0260", issn="2191-9496", url="https://www.degruyter.com/document/doi/10.1515/anona-2022-0260/html" }
Dokumenty
10.1515_anona-2022-0260